科目: 来源: 题型:
【题目】如图,矩形ABCD的边BC与x轴重合,B、C对应的横坐标是一元二次方程的两根,E是AD与y轴的交点,其纵坐标为2,过A、C作直线交y轴于F.
(1)求直线AF的解析式.
(2)M是BC上一点,其横坐标为2,在坐标轴上,你能否找到一点P,使?若能,求出点P的坐标;若不能,请说明理由.
(3)点Q是x轴上一动点,连接AQ,Q在运动过程中AQ+是否存在最小值?若存在,请求出AQ+最小值及Q的坐标;若不存在,请说明理由.
备用图
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是( )
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
查看答案和解析>>
科目: 来源: 题型:
【题目】在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.
(1)在图中当CE=CF时,求证:AF是∠BAD的平分线.
(2)在(1)的条件下,若∠ABC=90°,G是EF的中点(如图),请求出∠BDG的度数.
(3)如图,在(1)的条件下,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】有正面分别标有数字-3,-2,-1,0,1,2,3的七张不透明卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数字记为,则使关于的方程+x-m=0有实数解且关于的不等式组有整数解的的概率为_______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.
(1)当AP平分∠BAC时,试说明AM=AN.
(2)若∠PAC=m,求∠AMQ的大小(用含m的式子表示).
(3)用等式表示线段MB与PQ之间的数量关系,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线l1,l2交于点A,直线l2与x轴、y轴分别交于点B(﹣3,0)、D(0,3),直线l1所对应的函数关系式为y=﹣2x﹣2.
(1)求点C的坐标及直线l2所对应的函数关系式;
(2)求△ABC的面积;
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD
(2)如图2,如果∠EDF=60,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】市教育局为了解我市八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)。
请根据图中提供的信息,回答下列问题:
(1)______%,请补全条形图.
(2)计算出“活动时间为5天”的部分对应的扇形圆心角.
(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两单位为爱心基金捐款,其中甲单位捐款4800元,乙单位捐款6000元,已知乙单位捐款人数比甲单位多30人,且两单位人均捐款数相等,问这两单位一共有多少人?人均捐款额是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com