科目: 来源: 题型:
【题目】如图,某开发区有一块四边形的空地ABCD,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,则要投入_____元.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,则OE的最小值是为( )
A.B.0.25C.1D.2
查看答案和解析>>
科目: 来源: 题型:
【题目】为执行“两免一补”政策,某地区2014年投入教育经费2500万元,预计到2016年,三年共投入8275万元.设投入教育经费的年平均增长率为x,那么下列方程正确的是( )
A. 2500x28275 B. 2500(1+x%)28275
C. 2500(1+x)28275 D. 2500+2500(1+x)+2500(1+x)28275
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE∠C,AE:ED=2:1,则△BDE与△ABC的面积之比为( )
A. 1:6 B. 1:9 C. 2:13 D. 2:15
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中,假命题的是( )
A.在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形
B.在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
D.在△ABC中,若a=32,b=42,c=52,则△ABC是直角三角形
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,直线l1:与坐标轴分别交于点A,B,与直线l2:交于点C.
(1)求A,B两点的坐标;
(2)求△BOC的面积;
(3)如图2,若有一条垂直于x轴的直线l以每秒2个单位的速度从点A出发沿射线AO方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.
①当OA=2MN时,求t的值;
②试探究是否存在点Q,使得以△OQC为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】大丰区在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗5棵,B种树苗10棵,需要1300元;购买A种树苗3棵,B种树苗5棵,需要710元.
(1)求购买A,B两种树苗每棵各需要多少元?
(2)现需购进这两种树苗共100棵,其中A种树苗购进x棵,考虑到绿化效果和资金周转,A种树苗不能少于30棵,且用于购买这两种树苗的资金不能超过8650元,试求x 的取值范围。
(3)某包工队承包了该项种植任务,若种好一棵A种树苗需付工钱15元,种好一棵B种树苗需付工钱25元,在(2)的条件下,设种好这100棵树苗共需付工钱y元,,试求出y与x的函数表达式,并写出所付的种植工钱最少的购买方案及最少工钱是多少元。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.
(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;
(2)求矩形菜园ABCD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com