科目: 来源: 题型:
【题目】已知AP是△ABC的外角平分线,连结PB、PC.
(1)如图1①若BP平分∠ABC,且∠ACB=28°,求∠APB的度数.
②若P与A不重合,请判断AB+AC与PB+PC的大小关系,并证明你的结论.
(2)如图2,若过点P作PM⊥BA,交BA的延长线于M点,且∠BPC=∠BAC,求:的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,小强在河的一边,要测河面的一只船B与对岸码头A的距离,他的做法如下:
①在岸边确定一点C,使C与A,B在同一直线上;
②在AC的垂直方向画线段CD,取其中点O;
③画DF⊥CD使F、O、A在同一直线上;
④在线段DF上找一点E,使E与O、B共线.
他说测出线段EF的长就是船B与码头A的距离.他这样做有道理吗?为什么?
查看答案和解析>>
科目: 来源: 题型:
【题目】点,的坐标分别为和,抛物线的顶点在线段上运动时,形状保持不变,且与轴交于,两点(在的左侧),给出下列结论:①;②当时,随的增大而增大;③若点的横坐标最大值为,则点的横坐标最小值为;④当四边形为平行四边形时,.其中正确的是( )
A. ②④ B. ②③ C. ①③④ D. ①②④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将矩形置于平面直角坐标系中,点的坐标为,点在轴上,点在上,将矩形沿折叠压平,使点落在坐标平面内,设点的对应点为点.若抛物线(且为常数)的顶点落在的内部,则的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数图象的顶点为,其图象与轴的交点、的横坐标分别为,.与轴负半轴交于点,在下面五个结论中:
①;②;③;④只有当时,是等腰直角三角形;⑤使为等腰三角形的值可以有四个.
其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,∠ABD的角平分线与AC交于点E,连接DE.
(1)求证:点E到DA、DC的距离相等;
(2)求∠BED的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的点坐标分别为A(2,3),B(1,1),C(2,1).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出A1,B1,C1的坐标;
(2)直按写出△ABC关于直线m(直线m上各点的横坐标都为﹣1)对称的△A2B2C2的坐标:A2 ,B2 ,C2 .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,过C作CD垂直射线BF于点D,射线BF交AC于点O,过A作AE⊥BO于点E,若BD=13,AE=4,则CD=_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与探究
如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.
(1)求抛物线的解析式
(2)点E在抛物线的对称轴上,求CE+OE的最小值;
(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N
①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为 ;
②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.
注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图1,在ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.
(1)求证:△ADE≌△BFE;
(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.
①求证:HC=2AK;
②当点G是边BC中点时,恰有HD=nHK(n为正整数),求n的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com