科目: 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=x+8与x轴,y轴分别交于点A,B,直线y=x+1与直线AB交于点C,与y轴交于点D.
(1)求点C的坐标.
(2)求△BDC的面积.
(3)如图,P是y轴正半轴上的一点,Q是直线AB上的一点,连接PQ.
①若PQ∥x轴,且点A关于直线PQ的对称点A′恰好落在直线CD上,求PQ的长.
②若△BDC与△BPQ全等(点Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).
查看答案和解析>>
科目: 来源: 题型:
【题目】温州瓯柑,声名远播.某经销商欲将仓库的120吨瓯柑运往A,B两地销售.运往A,B两地的瓯柑(吨)和每吨的运费如下表.设仓库运往A地的瓯柑为x吨,且x为整数.
瓯柑(吨) | 运费(元/吨) | |
A地 | x | 20 |
B地 | 30 |
(1)设仓库运往A,B两地的总运费为y元.
①将表格补充完整.
②求y关于x的函数表达式.
(2)若仓库运往A地的费用不超过运往A,B两地费用的,求总运费的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=30°,以AC为腰在其右侧作△ACD,使AD=AC,连接BD,设∠CAD=.若=60°,CD=2,
(1)求BD的长.
(2)设∠DBC=,请你猜想与的数量关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,D是AB的中点,M是边AC上一点,连接DM,以DM为直角边作等腰直角三角形DME,斜边DE交线段CM于点F,若S△MDF=2S△MEF,则CM的长为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标第中有一个2×2的正方形网格,每个格点的横、纵坐标均为整数,已知点A(1,2).作直线OA并向右平移k个单位,要使分布在平移后的直线两侧的格点数相同,则k的值为( )
A.B.C.D.1
查看答案和解析>>
科目: 来源: 题型:
【题目】已知中,,,过顶点作射线.
(1)当射线在外部时,如图①,点在射线上,连结、,已知,,().
①试证明是直角三角形;
②求线段的长.(用含的代数式表示)
(2)当射线在内部时,如图②,过点作于点,连结,请写出线段、、的数量关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为2.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(2)如图2,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
查看答案和解析>>
科目: 来源: 题型:
【题目】用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com