相关习题
 0  358438  358446  358452  358456  358462  358464  358468  358474  358476  358482  358488  358492  358494  358498  358504  358506  358512  358516  358518  358522  358524  358528  358530  358532  358533  358534  358536  358537  358538  358540  358542  358546  358548  358552  358554  358558  358564  358566  358572  358576  358578  358582  358588  358594  358596  358602  358606  358608  358614  358618  358624  358632  366461 

科目: 来源: 题型:

【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,ACB=90°,AC=6cmBC=8cm,点D从点C出发,以2 cm/s 的速度沿折线CAB向点B运动,同时点E从点B出发,以1 cm/s的速度沿BC边向点C运动,设点E运动的时间为t (单位:s)(0<t<8).

(1) BDE 是直角三角形时,求t的值;

(2)若四边形CDEF是以CDDE为一组邻边的平行四边形,①设它的面积为S,求S关于t的函数关系式;②是否存在某个时刻t,使平行四边形CDEF为菱形?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形AOBC的边长为AO=6AC=8

1)如图EOB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AFBC于点G.求点G的坐标;

2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当 PQC三点恰好构成黄金圆时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下面材料,完成后面题目.
0°-360°间的角的三角函数
在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC,A是锐角,那么sinA=,cosA=,tanA=,cotA=
为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:
设有一个角α,我们以它的顶点作为原点,以它的始边作为x轴的正半轴ox,建立直角坐标系(图2),在角α的终边上任取一点P,它的横坐标是x,纵坐标是y,点P和原点(0,0)的距离为r=(r总是正的),然后把角α的三角函数规定为:sinα=,cosα=,tanα=,cotα=

我们知道,图1的四个比值的大小与角A的大小有关,而与直角三角形的大小无关,同样图2中四个比值的大小也仅与角α的大小有关,而与点P在角α的终边位置无关.
比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题.
(1)若90°<α<180°,则角α的三角函数值sinα、cosα、tanα、cotα,其中取正值的是哪几个?
(2)若角α的终边与直线y=2x重合,求sinα+cosα的值.
(3)若角α是钝角,其终边上一点P(x,),且cosα=x,求tanα的值.
(4)若0°≤α≤90°,求sinα+cosα的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向。为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行多少小时即可到达? (结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】1)模型建立:

如图,等腰直角三角形中,,直线经过点,过,过.求证:

2)模型应用:

①如图,一次函数的图象分别与轴、轴交于点,以线段为腰在第一象限内作等腰直角三角形,则点的坐标为___________(直接写出结果)

②如图,在中,,连接,作点,延长交于点,求证:的中点.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,每个小方格都是边长为1个单位的小正方形,A、B、C三点都是格点(每个小方格的顶点叫格点),其中A(1,8),B(3,8),C(4,7).

(1)若D(2,3),请在网格图中画一个格点△DEF,使△DEF ∽△ABC,且相似比为2∶1;

(2)求∠D的正弦值;

(3)若△ABC外接圆的圆心为P,则点P的坐标为__________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为1,点A与原点重合,点By轴的正半轴上,点Dx轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′CD相交于点M,则点M的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,过点AAEBC,垂足为E,连接DEF为线段DE上一点,且AFE=B

1)求证:ADF∽△DEC

2)若AB=8AD=6AF=4,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市将实行居民生活用电阶梯电价方案,如下表,图中折线反映了每户居民每月电费(元)与用电量(度)间的函数关系.

档次

第一档

第二档

第三档

每月用电量(度)

1)小王家某月用电度,需交电费___________元;

2)求第二档电费(元)与用电量(度)之间的函数关系式;

3)小王家某月用电度,交纳电费元,请你求出第三档每度电费比第二档每度电费多多少元?

查看答案和解析>>

同步练习册答案