科目: 来源: 题型:
【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目: 来源: 题型:
【题目】知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.
问题:如图1,是等腰三角形,,是的中点,以为腰作等腰,且满足,连接并延长交的延长线于点,试探究与之间的数量关系.
图1
发现:(1)与之间的数量关系为 .
探究:(2)如图2,当点是线段上任意一点(除、外)时,其他条件不变,试猜想与之间的数量关系,并证明你的结论.
图2
拓展:(3)当点在线段的延长线上时,在备用图中补全图形,并直接写出的形状.
备用图
查看答案和解析>>
科目: 来源: 题型:
【题目】现有一段米长的河堤的整治任务,打算请两个工程队来完成,经过调查发现,工程队每天比工程队每天多整治米,工程队单独整治的工期是工程队单独整治的工期的.
(1)问工程队每天分别整治多少米?
(2)由两个工程队先后接力完成,共用时天,问工程队分别整治多少米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).
(1)①点D的坐标是(___,___);
②当点P在AB上运动时,点P的坐标是(___,___)(用t表示);
(2)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;
(3)当点P在OA上运动时,连接BP,将线段BP绕点P逆时针旋转,点B恰好落到OC的中点M处,则此时点P运动的时间t=___秒.(直接写出参考答案)
查看答案和解析>>
科目: 来源: 题型:
【题目】数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.
(1)探究的几何意义:如图①,在直角坐标系中,设点M的坐标为(x,y),过M作MP⊥x轴于P,作MQ⊥y轴于Q,则P点坐标为(x,0),Q点坐标为(0,y),即OP=|x|,OQ=|y|,在△OPM中,PM=OQ=|y|,则MO=,因此,的几何意义可以理解为点M(x,y)与点O(0,0)之间的距离OM.
①的几何意义可以理解为点N1 (填写坐标)与点O(0,0)之间的距离N1O;
②点N2(5,﹣1)与点O(0,0)之间的距离ON2为 .
(2)探究的几何意义:如图②,在直角坐标系中,设点A′的坐标为(x﹣1,y﹣5),由探究(1)可知,A′O=,将线段A′O先向右平移1个单位,再向上平移5个单位,得到线段AB,此时点A的坐标为(x,y),点B的坐标为(1,5),因为AB=A′O,所以AB=,因此的几何意义可以理解为点A(x,y)与点B(1,5)之间的距离.
(3)探究的几何意义:请仿照探究二(2)的方法,在图③中画出图形,那么的几何意义可以理解为点C (填写坐标)与点D(x,y)之间的距离.
(4)拓展应用:①的几何意义可以理解为:点A(x,y)与点E(1,﹣4)的距离与点A(x,y)与点F (填写坐标)的距离之和.
②的最小值为 (直接写出结果)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A(﹣2,0),B(3,0).
(1)在y轴上找一点C,使之满足△ABC的面积为12,求点C的坐标.
(2)在y轴上找一点D,使BD=AB,求点D的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中△ABC三个顶点的坐标分别是点A(﹣2,3)、点B(﹣1,1)、点C(0,2).
(1)作△ABC关于C成中心对称的△A1B1C1;
(2)将△A1B1C1向右平移3个单位,作出平移后的△A2B2C2;
(3)在x轴上求作一点P,使PA1+PC1的值最小,并写出点 P 的坐标.(不写解答过程,直接写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com