相关习题
 0  358936  358944  358950  358954  358960  358962  358966  358972  358974  358980  358986  358990  358992  358996  359002  359004  359010  359014  359016  359020  359022  359026  359028  359030  359031  359032  359034  359035  359036  359038  359040  359044  359046  359050  359052  359056  359062  359064  359070  359074  359076  359080  359086  359092  359094  359100  359104  359106  359112  359116  359122  359130  366461 

科目: 来源: 题型:

【题目】如图,已知,AC=AD.给出下列条件: AB=AE;②BC=ED;③;④ .其中能使的条件为__________ (注:把你认为正确的答案序号都填上).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知ABC为等边三角形,BDABC的高,延长BCE,使CE=CD=1,连接DE,则BE=___________BDE=_________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在四边形中,的角平分线及外角的平分线所在的直线相交于点,若

1)如图(a)所示,,试用表示,直接写出结论.

2)如图(b)所示,,请在图中画出,并试用表示

3)一定存在吗?若有,写出的值;若不一定,直接写出满足什么条件时,不存在

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】几何模型:

条件:如图1,A、B是直线同旁的两个定点.

问题:在直线上确定一点P,使PA+PB的值最小.

方法:作点A关于直线的对称点A′,连接A′B于点P,则PA+PB=A′B的值最小(不必证明).

模型应用:

(1)如图2,已知平面直角坐标系中两定点A(0,-1),B(2,-1),Px轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______;

(2)如图3,正方形ABCD的边长为2,EAB的中点,PAC上一动点.由正方形对称性可知,BD关于直线AC对称,连接BD,则PB+PE的最小值是______;

(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为

(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是_______________.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读理解:

如图所示,在正中,分别在边上,若,则.小强是这样论证的:

是正三角形,.∴

又因为.∴

1)类比应用:如图所示,将阅读理解中的正三角形换成正四边形分别为上的点,类似地:若__________,则.请你用小强的证明方法论证.

2)拓展延伸:请你将上述命题推广到一般,如图所示,…是正边形.

写出命题:______________________________________

查看答案和解析>>

科目: 来源: 题型:

【题目】在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下空隙,又不互相重叠(在几何里叫作平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.

1)请根据下列图形,填写表中空格.

2)如图所示,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形.

3)不能用正五边形形状的材料铺满地面的理由是什么?

4)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个动点到达终点时,另一个动点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点DDF⊥BC于点F,连接DE,EF.

(1)当t为何值时,DF=DA?

(2)当t为何值时,△ADE为直角三角形?请说明理由.

(3)是否存在某一时刻t,使点F在线段AC的中垂线上,若存在,请求出t值,若不存在,请说明理由.

(4)请用含有t式子表示△DEF的面积,并判断是否存在某一时刻t,使△DEF的面积是△ABC面积的,若存在,请求出t值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,AE⊥BCE,将△ABE沿AE所在直线翻折得△AEF,若AB=2,∠B=45°,则△AEF与菱形ABCD重叠部分(阴影部分)的面积为( ).

A. 2 B. C. D.

查看答案和解析>>

同步练习册答案