相关习题
 0  358995  359003  359009  359013  359019  359021  359025  359031  359033  359039  359045  359049  359051  359055  359061  359063  359069  359073  359075  359079  359081  359085  359087  359089  359090  359091  359093  359094  359095  359097  359099  359103  359105  359109  359111  359115  359121  359123  359129  359133  359135  359139  359145  359151  359153  359159  359163  359165  359171  359175  359181  359189  366461 

科目: 来源: 题型:

【题目】如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30,再向旗杆的方向前进16米,到达点D处(CD,B三点在同一直线上),又测得旗杆顶端A的仰角为45,请计算旗杆AB的高度(结果保留根号).

查看答案和解析>>

科目: 来源: 题型:

【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在中,上的一点,,点点出发沿射线方向以每秒个单位的速度向右运动.设点的运动时间为.连结

1)当秒时,求的长度(结果保留根号)

2)当为等腰三角形时,求的值;

3)过点于点.在点的运动过程中,当为何值时,能使

查看答案和解析>>

科目: 来源: 题型:

【题目】一副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,试求CD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据: ,结果保留整数.)

查看答案和解析>>

科目: 来源: 题型:

【题目】某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的15倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.

(1)这项工程的规定时间是多少天?

(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为(  )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在中,在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.

;②;③;④

解:我写的真命题是:

中,已知:___________________

求证:_______________(不能只填序号)

证明如下:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线,直线分别与相交于点,小宇同学利用尺规按以下步骤作图:①以点为圆心,以任意长为半径作弧交于点,交于点②分别以为圆心,以大于,长为半径作弧,两弧在内交于点;③作射线于点,若,则____________

查看答案和解析>>

科目: 来源: 题型:

【题目】P“d定义如下:若点Q为圆上任意一点,线段PQ长度的最大值与最小值之差即为点P“d,记为dP.特别的,当点P,Q重合时,线段PQ的长度为0.当⊙O的半径为2时:

(1)若点C(﹣,0),D(3,4),则dc=   ,dp=   

(2)若在直线y=2x+2上存在点P,使得dP=2,求出点P的横坐标;

(3)直线y=﹣x+b(b>0)与x轴,y轴分别交于点A,B.若线段AB上存在点P,使得2≤dP<3,请你直接写出b的取值范围.

查看答案和解析>>

同步练习册答案