相关习题
 0  359045  359053  359059  359063  359069  359071  359075  359081  359083  359089  359095  359099  359101  359105  359111  359113  359119  359123  359125  359129  359131  359135  359137  359139  359140  359141  359143  359144  359145  359147  359149  359153  359155  359159  359161  359165  359171  359173  359179  359183  359185  359189  359195  359201  359203  359209  359213  359215  359221  359225  359231  359239  366461 

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,EAD边上一点,PQ垂直平分BE,分别交ADBEBC于点POQ,连接BPQE

1)求证:四边形BPEQ是菱形:

2)若AB6FAB中点,OF4,求菱形BPEQ的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠BCD90°,将四边形ABCD沿AB方向平移得到四边形A'B'C'D'BCC'D'相交于点E,若BC8CE3C'E2,则阴影部分的面积为(  )

A.12+2B.13C.2+6D.26

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点EBC边上的动点,当以CE为半径的⊙C与边AD有两个交点时,半径CE的取值范围是(  )

A. 0<CE≤8 B. 0<CE≤5 C. 3<CE≤8 D. 3<CE≤5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示O是正方形ABCD的外接圆P是O上不与A、B重合的任意一点APB等于( )

A45° B.60° C.45° 或135° D.60° 或120°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠OAC=4.

(1)求抛物线的解析式;

(2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PHAD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求PHM的周长的最大值.

(3)在(2)的条件下,如图2,在直线EP的右侧、x轴下方的抛物线上是否存在点N,过点N作NGx轴交x轴于点G,使得以点E、N、G为顶点的三角形与AOC相似?如果存在,请直接写出点G的坐标:如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB6BC8EBC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为(  )

A.2B.6C.36D.236

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为3,对角线ACBD相交于点O,将AC向两个方向延长,分别至点E和点F,且AECF3,则四边形BEDF的周长为( )

A. 20B. 24C. 12D. 12

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线与x轴的交点坐标分别为A(1,0),B(x2,0)(点B在点A的右侧),其对称轴是x=3,该函数有最小值是﹣2.

(1)求二次函数解析式;

(2)在图1上作平行于x轴的直线,交抛物线于C(x3,y3),D(x4,y4),求x3+x4的值;

(3)将(1)中函数的部分图象(x>x2)向下翻折与原图象未翻折的部分组成图象“G”,如图2,在(2)中平行于x轴的直线取点E(x5,y5)、(x4<x5),结合函数图象求x3+x4+x5的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图1中,的平分线相交于点,过点

(1)直接写出图1中所有的等腰三角形.指出间有怎样的数量关系?

(2)(1)的条件下,若,求的周长;

(3)如图2,若中,的平分线与三角形外角的平分线交于点,过点作,交,请问(1)间的关系还是否存在,若存在,说明理由:若不存在,写出三者新的数量关系,并说明理由;

(4)如图3的外角平分线的延长线相交于点,请直接写出之间的数量关系.不需证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形

(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CDBC,AD之间的数量关系

猜想结论:   (要求用文字语言叙述)

写出证明过程(利用图1,写出已知、求证、证明)

(性质应用)

①初中学过的下列四边形中哪些是圆外切四边形   (填序号)

A:平行四边形:B:菱形:C:矩形;D:正方形

②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是   

③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.

查看答案和解析>>

同步练习册答案