科目: 来源: 题型:
【题目】如图1,图2,图3,图4均为8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,图中均有线段AB.按要求画图.
(1)在图1中,以格点为顶点,AB为腰画一个锐角等腰三角形;
(2)在图2中,以格点为顶点,AB为底边画一个锐角等腰三角形.
(3)在图3中,以格点为顶点,AB为腰画一个等腰直角三角形;
(4)在图4中,以格点为顶点,AB为一边画一个正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数.
(1)求证:无论m为任何实数,此函数图象与x轴总有两个交点;
(2)若此函数图象与x轴的一个交点为(-3,0),求此函数图象与x轴的另一个交点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形,其中,正确命题为_____(选填序号).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图 1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点 D(-3,8)且与x轴,y轴分别交于C、E.
(1)求出点A坐标,直线l2的解析式;
(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;
(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,8),且抛物线的对称轴是直线x=﹣2.
(1)求此抛物线的表达式;
(2)连接AC,BC,若点E是线段AB上的一个动点(与点A,B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并判断S取得最大值时△BCE的形状;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,中,,,,若点从点出发,以每秒的速度沿折线运动,设运动时间为秒.
备用图
(1)___________;
(2)若点恰好在的角平分线上,求此时的值:
(3)在运动过程中,当为何值时,为等腰三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,
其中正确的结论是(填写代表正确结论的序号)__________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在平面直角坐标系中,已知,,.
(1)在图中画出,的面积是_____________;
(2)若点与点关于轴对称,则点的坐标为_____________;
(3)已知为轴上一点,若的面积为,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com