科目: 来源: 题型:
【题目】抛物线交x轴于A、B两点,交y轴于点C,顶点为D.
(1)写出抛物线的对称轴及C、D两点的坐标(用含a的代数式表示)
(2)连接BD并以BD为直径作⊙M,当a=-1时,请判断⊙M是否经过点C,并说明理由;
(3)在(2)题的条件下,点P是抛物线上任意一点,过P作直线垂直于对称轴,垂足为Q. 那么是否存在这样的点P,使△PQD与以B、C、D为顶点的三角形相似?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.
(1)如图1,当点E在直径AB上时,试证明:
(2)当点E在直径AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在进行二次根式化简时,我们有时会碰上如,,一样的式子,这样的式子我们可以将其进一步化简=,,以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:
(1)化简:;
(2)若a是的小数部分,求的值;
(3)矩形的面积为3+1,一边长为﹣2,求它的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知平面直角坐标系中两定点、,抛物线过点A,B,与y交于C点,点P(m,n)为抛物线上一点.
(1)求抛物线的解析式和点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)当∠PAB=∠ABC时,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | |
摸到白球的次数m | 58 | 116 | 295 | 484 | 601 | |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.605 | 0.601 |
(1)计算并完成上述表格;
(2)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)
(3)请你估算口袋中白球的数量接近多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】某住宅小区在住宅建设时留下一块1798平方米的空地,准备建一个矩形的露天游泳池,设计如图所示,游泳池的长是宽的2倍,在游泳池的前侧留一块5米宽的空地,其它三侧各保留2米宽的道路及1米宽的绿化带
(1)请你计算出游泳池的长和宽
(2)若游泳池深3米,现要把池底和池壁(共5个面)都贴上瓷砖,请你计算要贴瓷砖的总面积
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图(1),在平行四边形ABCD中,DE⊥AB,BF⊥CD,垂足分别为E、F,求证:AE=CF;
(2)如图(2),在平行四边形ABCD中,AC、BD是两条对角线,求证AC2+BD2=2(AB2+BC2)
(3)如图(3),PQ是△PMN的中线,若PM=11,PN=13,MN=10,求出PQ的长度.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(-2,0),C点坐标为(0,-1).
(1)AC的长为______;
(2)求证:AC⊥BC;
(3)若以A、B、C及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标______.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线的解析式为,⊙O是以坐标原点为圆心,半径为1的圆,点P在轴上运动,过点P且与直线l平行(或重合)的直线与⊙O有公共点,则点P的横坐标为整数的点的个数有 _________个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com