科目: 来源: 题型:
【题目】某公司市场营销部的营销员有部分收入按照业务量或销售额提成,即多卖多得.营销员的月提成收入(元)与其每月的销售量(万件)成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:
(1)求出(元)与(万件)(其中)之间的函数关系式;
(2)已知该公司营销员李平12月份的销售量为1.2万件,求李平12月份的提成收入.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).
(1)求抛物线的解析式.
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,若点和点关于轴对称,点和关于直线对称,则称点是点关于轴,直线的“二次对称点”.
(1)已知点,直线是经过且平行于轴的一条直线,则点的“二次对称点”的坐标为______;
(2)如图1,直线经过、,点的坐标为.
①点关于轴,直线的“二次对称点”的坐标为______;
②当点在轴上移动,请你在图1中画出它关于轴,直线的“二次对称点”的运动路径.
(3)如图2,是轴上的动点,线段经过点,且点点的坐标分别为,直线经过且与轴负半轴夹角为60°,在点的运动过程中,若线段上存在点,使得点是点关于轴,直线的“二次对称点”,且点在轴上,则点的纵坐标的取值范围是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知△ABC是等边三角形.
(1)如图(1),点E在线段AB上,点D在射线CB上,且ED=EC.将△BCE绕点C顺时针旋转60°至△ACF,连接EF.猜想线段AB,DB,AF之间的数量关系;
(2)点E在线段BA的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF之间的数量关系;
(3)请选择(1)或(2)中的一个猜想进行证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,平分,平分.
(1)求的度数;
(2)如图2,过点的直线交射线于点,交射线于点,求证:;
(3)如图3,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等腰直角△ABC中,CA=CB,点E为△ABC外一点,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
(1)求证:△CBE为等边三角形;
(2)若AD=5,DE=7,求CD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知排球场的长度OD为18 m,位于球场中线处球网的高度AB为2.4 m,一队员站在点O处发球,排球从点O的正上方1.6 m的C点向正前方飞出,当排球运行至离点O的水平距离OE为6 m时,到达最高点G建立如图所示的平面直角坐标系
(1) 当球上升的最大高度为3.4 m时,对方距离球网0.4 m的点F处有一队员,他起跳后的最大高度为3.1 m,问这次她是否可以拦网成功?请通过计算说明
(2) 若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)
查看答案和解析>>
科目: 来源: 题型:
【题目】在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com