相关习题
 0  359444  359452  359458  359462  359468  359470  359474  359480  359482  359488  359494  359498  359500  359504  359510  359512  359518  359522  359524  359528  359530  359534  359536  359538  359539  359540  359542  359543  359544  359546  359548  359552  359554  359558  359560  359564  359570  359572  359578  359582  359584  359588  359594  359600  359602  359608  359612  359614  359620  359624  359630  359638  366461 

科目: 来源: 题型:

【题目】(本小题满分12分)

已知:把RtABC和RtDEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.ACB = EDF = 90°,DEF = 45°AC = 8 cm,BC = 6 cm,EF = 9 cm

如图(2),DEF从图(1)的位置出发,以1 cm/s的速度沿CBABC匀速,在DEF移的同时,点P从ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移.当DEF的顶点D移动到AC边上时,DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设动时间为t(s)(0<t<4.5).

解答下列问题:

(1)当t为何值时,点A在线段PQ的垂直平分线上?

(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.

(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】梧州市特产批发市场有龟苓膏粉批发,其中A品牌的批发价是每包20元,B品牌的批发价是每包25元,小王需购买A,B两种品牌的龟苓膏粉共1000包.

(1)若小王按需购买A,B两种品牌龟苓膏粉共用22000元,则各购买多少包?

(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y元,设A品牌买了x包,请求出yx之间的函数关系式;

(3)(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本?(运算结果取整数)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,已知二次函数abc为常数,a≠0)的图象过点O00)和点A40),函数图象最低点M的纵坐标为,直线l的解析式为y=x

1)求二次函数的解析式;

2)直线l沿x轴向右平移,得直线l′l′与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点CCE⊥x轴于点E,把△BCE沿直线l′折叠,当点E恰好落在抛物线上点E′时(图2),求直线l′的解析式;

3)在(2)的条件下,l′y轴交于点N,把△BON绕点O逆时针旋转135°得到△B′ON′Pl′上的动点,当△PB′N′为等腰三角形时,求符合条件的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学开展唱红歌比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.

1)根据图示填写下表;

班级

平均数(分)

中位数(分)

众数(分)

九(1

85

85


九(2

80



2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;

3)计算两班复赛成绩的方差.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商店购进一批单价为16元的日用品,销售一段时间后,为了获取更多利润, 商店决定提高销售价格,经试验发现,若按每件20元的价格销售时,每月能卖360; 若按每件25元的价格销售时,每月能卖210.假定每月销售件数y()是价格x( /)的一次函数.

(1)试求yx之间的函数关系式;

(2)在商品不积压,且不考虑其他因素的条件下,问销售价格为多少时,才能使每月获得最大利润?每月的最大利润是多少?(总利润=总收入-总成本).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=x+m (m为常数)的图像与x轴交于点A(3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(abc为常数,且a0)经过AC两点,并与x轴的正半轴交于点B

(1)m的值及抛物线的函数表达式;

(2)P是抛物线对称轴上一动点,△ACP周长最小时,求出P的坐标;

(3)是否存在抛物在线一动点Q,使得△ACQ是以AC为直角边的直角三角形?若存在,求出点Q的横坐标;若不存在,请说明理由;

(4)(2)的条件下过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1)M2(x2,y2)两点,试问是否为定值,如果是,请直接写出结果,如果不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:

原料名称 饮料名称

A

20克

40克

B

30克

20克

(1)有几种符合题意的生产方案写出解析过程;

(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?

查看答案和解析>>

科目: 来源: 题型:

【题目】一家图文广告公司制作的宣传画板颇受商家欢迎,这种画板的厚度忽略不计,形状均为正方形,边长在10~30dm之间.每张画板的成本价(单位:元)与它的面积(单位:dm2)成正比例,每张画板的出售价(单位:元)由基础价和浮动价两部分组成,其中基础价与画板的大小无关,是固定不变的.浮动价与画板的边长成正比例.在营销过程中得到了表格中的数据.

画板的边长(dm)

10

20

出售价(元/张)

160

220

(1)求一张画板的出售价与边长之间满足的函数关系式;

(2)已知出售一张边长为30dm的画板,获得的利润为130元(利润=出售价-成本价),

①求一张画板的利润与边长之间满足的函数关系式;

②当边长为多少时,出售一张画板所获得的利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某一工程队,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元. 工程领导小组根据甲、乙两队的投标书测算,有如下方案:

1)甲队单独完成这项工程刚好如期完成;

2)乙队单独完成这项工程要比规定日期多用6天;

3)若甲、乙两队合作3天,余下的工程由乙队单独做也正好如期完成;

试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.

(1)当t为何值时,AMN=ANM?

(2)当t为何值时,AMN的面积最大?并求出这个最大值.

查看答案和解析>>

同步练习册答案