相关习题
 0  359876  359884  359890  359894  359900  359902  359906  359912  359914  359920  359926  359930  359932  359936  359942  359944  359950  359954  359956  359960  359962  359966  359968  359970  359971  359972  359974  359975  359976  359978  359980  359984  359986  359990  359992  359996  360002  360004  360010  360014  360016  360020  360026  360032  360034  360040  360044  360046  360052  360056  360062  360070  366461 

科目: 来源: 题型:

【题目】如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是(  )

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1分别与x轴、y轴交于点B、C,且与直线l2交于点A.

(1)求出点A的坐标

(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式

(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为迎接:国家卫生城市复检,某市环卫局准备购买AB两种型号的垃圾箱,通过市场调研得知:购买3A型垃圾箱和2B型垃圾箱共需540元,购买2A型垃圾箱比购买3B型垃圾箱少用160元.

1)求每个A型垃圾箱和B型垃圾箱各多少元?

2)该市现需要购买AB两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.

①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;

②当买A型垃圾箱多少个时总费用最少,最少费用是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】将两张完全相同的矩形纸片ABCD、FBED按如图方式放置,BD为重合的对角线.重叠部分为四边形DHBG.

(1)试判断四边形DHBG为何种特殊的四边形,并说明理由;

(2)若AB=8,AD=4,求四边形DHBG的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知函数的图像在第一象限交于点Am,y1),点Bm+1,y2)在的图像上,且点B在以O 点为圆心,OA为半径的⊙O上,则k的值为( ).

A. B. 1 C. D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知 AB 两点的坐标分别为(﹣2,0)、(0,1),C 的圆心坐标为(0,﹣1),半径为 1,E 是⊙C 上的一动点ABE 面积的最大值为

A. B. 3+ C. 3+ D. 4+

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将ΔADP沿AP翻折得到,PD′的延长线交边AB于点M,过点B作BN‖MP交DC于点N.

图1

图2

(1)求证:

(2)请判断四边形PMBN的形状,并说明理由;

(3)如图2,连接AC,分别交PM,PB于点E,F.若tan∠PAD=,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,裕安中学体育训练中,一实心球从斜坡O点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画,实心球的落点A的坐标是().

(1)求二次函数解析式和二次函数图象的最高点P的坐标;

(2)连接抛物线的最高点P与点OA得△POA,求△POA的面积;

查看答案和解析>>

科目: 来源: 题型:

【题目】AB两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离A地的距离Skm)与时间th)的关系,结合图像回答下列问题:

1)表示乙离开A地的距离与时间关系的图像是________();

甲的速度是__________km/h;乙的速度是________km/h

2)甲出发后多少时间两人恰好相距5km

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点D是⊙O上一点,直线AE经过点D,直线AB经过圆心O,交⊙O于B,C两点,CE⊥AE,垂足为点E,交⊙O于点F,∠BCD=∠DCF

(1)求∠A+∠BOD的度数;

(2)若sin∠DCE=,⊙O的半径为5,求线段AB的长.

查看答案和解析>>

同步练习册答案