科目: 来源: 题型:
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,各顶点的坐标分别为
(1)作出关于原点
成中心对称的
.
(2)作出点关于
轴的对称点
若把点
向右平移
个单位长度后,落在
的内部(不包括顶点和边界),
的取值范围,
查看答案和解析>>
科目: 来源: 题型:
【题目】一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为
.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:
①ac<0②2a+b=0③4a+2b+c>0④对任意实数x均有ax2+bx≥a+b
正确的结论序号为:______ .
查看答案和解析>>
科目: 来源: 题型:
【题目】在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数 y=ax2+x+c 的图象与 y 轴交于点 A(0,4),
与 x 轴交于点 B、C,点 C 坐标为(8,0),连接 AB、AC.
(1)请直接写出二次函数 y=ax2+x+c 的表达式;
(2)判断△ABC 的形状,并说明理由;
(3)若点 N 在 x 轴上运动,当以点 A、N、C 为顶点的三角形是等腰三角形时, 请直接写出此时点 N 的坐标;
(4)若点 N 在线段 BC 上运动(不与点 B、C 重合),过点 N 作 NM∥AC,交AB 于点 M,当△AMN 面积最大时,求此时点 N 的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】问题提出:某物业公司接收管理某小区后,准备进行绿化建设,现要将一块四边形的空地(如图5,四边形ABCD)铺上草皮,但由于年代久远,小区规划书上该空地的面积数据看不清了,仅仅留下两条对角线AC,BD的长度分别为20cm,30cm及夹角∠AOB为60°,你能利用这些数据,帮助物业人员求出这块空地的面积吗?
问题显然,要求四边形ABCD的面积,只要求出△ABD与△BCD(也可以是△ABC与△ACD)的面积,再相加就可以了.
建立模型:我们先来解决较简单的三角形的情况:
如图1,△ABC中,O为BC上任意一点(不与B,C两点重合),连接OA,OA=a,BC=b,∠AOB=α(α为OA与BC所夹较小的角),试用a,b,α表示△ABC的面积.
解:如图2,作AM⊥BC于点M,
∴△AOM为直角三角形.
又∵∠AOB=α,∴sinα=即AM=OAsinα
∴△ABC的面积=BCAM=
BCOAsinα=
absinα.
问题解决:请你利用上面的方法,解决物业公司的问题.
如图3,四边形ABCD中,O为对角线AC,BD的交点,已知AC=20m,BD=30m,∠AOB=60°,求四边形ABCD的面积.(写出辅助线作法和必要的解答过程)
新建模型:若四边形ABCD中,O为对角线AC,BD的交点,已知AC=a,BD=b,∠AOB=α(α为OA与BC所夹较小的角),直接写出四边形ABCD的面积= .
模型应用:如图4,四边形ABCD中,AB+CD=BC,∠ABC=∠BCD=60°,已知AC=a,则四边形ABCD的面积为多少?(“新建模型”中的结论可直接利用)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在正方形中,
,
为对角线
上的一点,连接
和
.
(1)求证:;
(2)如图2,延长交
于点
,
为
上一点,连接
交
于点,且有
.
①判断与
的位置关系,并说明理由;
②如图3,取中点
,连接
、
,当四边形
为平行四边形时,求
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com