相关习题
 0  359994  360002  360008  360012  360018  360020  360024  360030  360032  360038  360044  360048  360050  360054  360060  360062  360068  360072  360074  360078  360080  360084  360086  360088  360089  360090  360092  360093  360094  360096  360098  360102  360104  360108  360110  360114  360120  360122  360128  360132  360134  360138  360144  360150  360152  360158  360162  360164  360170  360174  360180  360188  366461 

科目: 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;

(3)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,BAD是由BEC在平面内绕点B旋转60°而得,且ABBC,BE=CE,连接DE.

(1)求证:BDE≌△BCE;

(2)试判断四边形ABED的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】我省松原地震后,某校开展了“我为灾区献爱心”捐款活动,八年级一班的团支部对全班50人捐款数额进行了统计,绘制出如下的统计图.

1)把统计图补充完整;

2)直接写出这组数据的众数和中位数;

3)若该校共有学生1600人,请根据该班的捐款情况估计该校捐款金额为20元的学生人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数ykx+b与反比例函数yx0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣13)和点B(﹣3n).

1)填空:m   n   

2)求一次函数的解析式和AOB的面积.

3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yx2mxn经过点A(30)

B(03),点P是直线AB上的动点,过点Px轴的垂线交抛物线于点M,设点P的横

坐标为t

(1)分别求出直线AB和这条抛物线的解析式.

(2)若点P在第四象限,连接AMBM,当线段PM最长时,求ABM的面积.

(3)是否存在这样的点P,使得以点PMBO为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2ax2+bx﹣3的图象上.

(1)求m的值和二次函数的解析式;

(2)请直接写出使y1y2时自变量x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣8xk2=0(k为常数).

(1)求证:方程有两个不相等的实数根;

(2)设x1x2为方程的两个实数根,且x1+2x2=7,试求出方程的两个实数根和k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,四边形AOBC是矩形,点O00),点A50),点B03).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点OBC的对应点分别为DEF

1)如图①,当点D落在BC边上时,求点D的坐标;

2)如图②,当点D落在线段BE上时,ADBC交于点H

①求证ADB≌△AOB

②求点H的坐标.

3)记K为矩形AOBC对角线的交点,SKDE的面积,求S的取值范围(直接写出结果即可).

查看答案和解析>>

科目: 来源: 题型:

【题目】小明在课外学习时遇到这样一个问题:

定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.

求函数y=﹣x2+3x﹣2的“旋转函数”.

小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.

请参考小明的方法解决下面问题:

(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;

(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;

(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分布是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.”

查看答案和解析>>

科目: 来源: 题型:

【题目】某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.

(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?

(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?

(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.

查看答案和解析>>

同步练习册答案