相关习题
 0  360022  360030  360036  360040  360046  360048  360052  360058  360060  360066  360072  360076  360078  360082  360088  360090  360096  360100  360102  360106  360108  360112  360114  360116  360117  360118  360120  360121  360122  360124  360126  360130  360132  360136  360138  360142  360148  360150  360156  360160  360162  360166  360172  360178  360180  360186  360190  360192  360198  360202  360208  360216  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过点A(﹣4,0)C(0,﹣4),与x轴另一个交点为B.

(1)求此二次函数的解析式和顶点D的坐标;

(2)求出A、B两点之间的距离;

(3)直接写出当y>﹣4时,x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线y=x+2x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.

(1)求抛物线的解析式;

(2)M是抛物线x轴上方一点,∠MBA=CBO,求点M的坐标;

(3)过点AAB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.

(1)求该抛物线的函数关系式;

(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线的顶点为(1,﹣4),x轴交于A、B两点,与y轴负半轴交于C(0,﹣3).

(1)求抛物线的解析式;

(2)P为对称轴右侧抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M落在对称轴上,求P点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=x2﹣2x﹣3x轴交于A,B两点(AB的左侧),顶点为C.

(1)A,B两点的坐标;

(2)若将该抛物线向上平移t个单位后,它与x轴恰好只有一个交点,求t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为8,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.

(1)判断四边形EFGH的形状.(直接写结论,不必证明)

(2)BE=x,四边形EFGH的面积为S,请真接写出Sx的数解析式,并求出S的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某汽车厂决定把一块长100m、宽60m的矩形空地建成停车场.设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为停车位,且四周的4个出口宽度相同,其宽度不小于28m,不大于52m.设绿化区较长边为xm,停车场的面积为ym2

(1)直接写出:

①用x的式子表示出口的宽度为_____

yx的函数关系式及x的取值范围.

(2)求停车场的面积y的最大值.

(3)预计停车场造价为100/m2,绿化区造价为50/m2.如果汽车厂投资不得超过540000元建造,当x为整数时,共有几种建造方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示.

(1)确定二次函数的解析式;

(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.

1)设某家庭月用水量为x吨,水费为y元,请写出yx之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;

2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

同步练习册答案