相关习题
 0  360046  360054  360060  360064  360070  360072  360076  360082  360084  360090  360096  360100  360102  360106  360112  360114  360120  360124  360126  360130  360132  360136  360138  360140  360141  360142  360144  360145  360146  360148  360150  360154  360156  360160  360162  360166  360172  360174  360180  360184  360186  360190  360196  360202  360204  360210  360214  360216  360222  360226  360232  360240  366461 

科目: 来源: 题型:

【题目】周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点CA共线.

已知:CBADEDAD,测得BC=1mDE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=S△ABF,其中正确的结论有________个。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,AD=6,点M为对角线AC上的一个动点(不与端点A,C重合),过点M作ME⊥AD,MF⊥DC,垂足分别为E,F,则四边形EMFD面积的最大值为(

A. 6 B. 12 C. 18 D. 24

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,抛物线x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线AE:与抛物线相交于另一点E,点D为抛物线的顶点.

(1)求直线BC的解析式及点E的坐标;

(2)如图2,直线AE上方的抛物线上有一点P,过点PPFBC于点F,过点P作平行于轴的直线交直线BC于点G,当△PFG周长最大时,在轴上找一点M,在AE上找一点N,使得值最小,请求出此时N点的坐标及的最小值;

(3)在第(2)问的条件下,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点N,E,R,S为顶点的四边形为矩形,若存在,请直接写出点S的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读下列材料,并解决问题:任意一个大于1的正整数m都可以表示为:m=p2+q(p、q是正整数,在m的所有这种表示中,如果最小时,规定:F(m)=.例如:21可以表示为:21=12+20=22+17=32+12=42+5,因为>>>,所以F(21)=

(1)F(33)的值;

(2)如果一个正整数n可以表示为t2-t(其中t≥2,且是正整数),那么称n是次完全平方数,证明:任何一个次完全平方数n,都有F(n)=1;

(3)一个三位自然数k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c为整数),满足十位上的数字恰好等于百位上的数字与个位上的数字之和,且k与其十位上数字的2倍之和能被9整除,求所有满足条件的kF(k)的最小值

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知正方形ABCD,对角线AC、BD交于点O,点E在对角线BD上,连接AE.点GAD延长线上一点,DF平分∠GDC,且DF=BE,连接FB、FC,FBAC交于点M.

(1)若点EBD的三等分点(DE<BE),BF=,求△ABE的面积;

(2)求证:DE=2CM.

查看答案和解析>>

科目: 来源: 题型:

【题目】四季水果店正准备促销广西脆皮桔和山东烟台红富士苹果,已知脆皮桔的进价为12元/千克,售价为24元/千克,红富士苹果的进价为10元/千克,售价为20元/千克,第一天该店销售两种水果共获利1156元,其中脆皮桔的销量比红富士苹果销量的4倍少10千克.

(1)求第一天这两种水果的销量分别是多少千克?

(2)该店在第一天的售价基础上销售一段时间后,天气突然变冷不利于脆皮桔的保存,为了更好的销售这两种水果,店主决定对脆皮桔在原来售价基础上降价a%,销量在原有基础上增加a%,“红富士苹果在原来售价基础上提升a%,销量比原来上升了30千克,其中两种水果的进价均不变,结果每天获利比原来多300元,求a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线y=-x+3x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过B点,且与x轴交于C,D两点(点C在左侧),且C(-3,0).

(1)求抛物线的解析式;

(2)平移直线AB,使得平移后的直线与抛物线分别交于点D,E,与y轴交于点F,连接CE,CF,求△CEF的面积.

查看答案和解析>>

同步练习册答案