相关习题
 0  360059  360067  360073  360077  360083  360085  360089  360095  360097  360103  360109  360113  360115  360119  360125  360127  360133  360137  360139  360143  360145  360149  360151  360153  360154  360155  360157  360158  360159  360161  360163  360167  360169  360173  360175  360179  360185  360187  360193  360197  360199  360203  360209  360215  360217  360223  360227  360229  360235  360239  360245  360253  366461 

科目: 来源: 题型:

【题目】已知:mn是方程x2﹣6x+5=0的两个实数根,且mn,抛物线y=﹣x2+bx+c的图象经过点Am,0),B(0,n).

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点CD的坐标和△BCD的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.

(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?

(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.

(1)求DE的长度;

(2)指出BEDF的关系如何?并说明由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,I是△ABC的内心,AI的延长线交边BC于点D,交△ABC的外接圆于点E.

(1)BEIE相等吗?请说明理由.

(2)连接BI,CI,CE,若∠BED=CED=60°,猜想四边形BECI是何种特殊四边形,并证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在O的内接四边形ABCD中,AB=ADC=120°,点E上.

1)求∠E的度数;

2)连接ODOE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.EBC边上的一点,以EC为直径的⊙O经过点D.

(1)求证:AB⊙O的切线;

(2)若CD的弦心距为1,BE=EO,求BD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点CCEADE,连接BE,在点D移动的过程中,BE的取值范围是____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,经过B(2,0)、C(6,0)两点的⊙Hy轴的负半轴相切于点A,双曲线y= 经过圆心H,则反比例函数的解析式为________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

【答案】(1)y=-x2x+8(2)

【解析】试题分析:(1)求出一元二次方程的两根即可求出两点坐标,把BC两点坐标代入二次函数的解析式就可解答;

(2)过点FFGAB,垂足为G,由EFAC,得BEF∽△BAC,利用相似比求EF利用sin∠FEG=sin∠CABFG,根据S=SBCE-SBFE,求Sm之间的函数关系式.

解:(1)解方程x2-10x+16=0得x12x28

∴B20)、C08

∴所求二次函数的表达式为y=-x2x8

(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,

∵OA6OC8∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

过点F作FG⊥AB,垂足为G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

点睛:本题考查了一元二次方程的解法,待定系数法求函数关系系,相似三角形的判定与性质,span>锐角三角函数的定义,割补法求图形的面积,熟练掌握待定系数法求二次函数关系式、相似三角形的判定与性质是解答本题的关键.

型】解答
束】
23

【题目】如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).RtCDE中,CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.RtCDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:

(1)如图(2),当RtCDE运动到点D与点O重合时,设CE交AB于点M,求BME的度数.

(2)如图(3),在RtCDE的运动过程中,当CE经过点B时,求BC的长.

(3)在RtCDE的运动过程中,设AC=h,OAB与CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB⊙O的切线.

2)已知AOO于点E,延长AOO于点DtanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

考点:圆的综合题.

型】解答
束】
22

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段O、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

查看答案和解析>>

同步练习册答案