相关习题
 0  360060  360068  360074  360078  360084  360086  360090  360096  360098  360104  360110  360114  360116  360120  360126  360128  360134  360138  360140  360144  360146  360150  360152  360154  360155  360156  360158  360159  360160  360162  360164  360168  360170  360174  360176  360180  360186  360188  360194  360198  360200  360204  360210  360216  360218  360224  360228  360230  360236  360240  360246  360254  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.

(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是   

(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;

(3)已知M上有一点P是线段AB的“环绕点”,且点M(4,1),求M的半径r的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰RtABC中,∠ACB90°,ACBCD是线段BC上一动点(不与点BC重合),连接AD,延长BC至点E,使得CECD,过点EEFAD于点F,再延长EFAB于点M

1)若DBC的中点,AB4,求AD的长;

2)求证:BMCD

查看答案和解析>>

科目: 来源: 题型:

【题目】“共建环保模范城,共享绿色新重庆”,市政府强力推进城市生活污水处理、生活垃圾处理设施建设改造工作.为此,某化工厂在一期工程完成后购买了4台甲型和5台乙型污水处理设备,共花费资金102万元,且每台乙型设备的价格比每台甲型设备价格少3万元.已知每台甲型设备每月能处理污水240吨,每台乙型设备每月能处理污水180吨.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共12台用于二期工程的污水处理,预算本次购买资金不超过129万元,预计二期工程完成后每月将产生不少于2220吨污水.

1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?

2)请你求出用于二期工程的污水处理设备的所有购买方案;

3)请你说明在(2)的所有方案中,哪种购买方案的总花费最少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点A(x1,y1),点B(x2,y2)在直线y=kx+b(k≠0)上,且x1y1=x2y2=k,若y1y2=﹣9,则k的值等于_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等腰RtABC中,,点P在以斜边AB为直径的半圆上,MPC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(

A. B. 2 C. D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点IABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为(  )

A. 4.5 B. 4 C. 3 D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.

(1)求抛物线的解析式;

(2)当四边形ODEF是平行四边形时,求点P的坐标;

(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cmBC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MGBC,运动时间为t秒(0<t),连接MN

(1)用含t的式子表示MG

(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;

(3)若△BMN与△ABC相似,求t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= .对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.

(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

同步练习册答案