相关习题
 0  360093  360101  360107  360111  360117  360119  360123  360129  360131  360137  360143  360147  360149  360153  360159  360161  360167  360171  360173  360177  360179  360183  360185  360187  360188  360189  360191  360192  360193  360195  360197  360201  360203  360207  360209  360213  360219  360221  360227  360231  360233  360237  360243  360249  360251  360257  360261  360263  360269  360273  360279  360287  366461 

科目: 来源: 题型:

【题目】如图,在四边形中,, 的中点.以每秒1个单位长度的速度从点出发,沿向点运动;同时以每秒3个单位长度的速度从 出发,沿向点运动.停止运动时,点也随之停止运动.当运动时间秒时,以点为顶点的四边形是平行四边形.的值为_________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数的解析式是y=x2﹣2x﹣3.

(1)与y轴的交点坐标是   ,顶点坐标是   

(2)在坐标系中利用描点法画出此抛物线;

x

y

(3)结合图象回答:当﹣2<x<2时,函数值y的取值范围是   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,O的半径为3,A,P两点在O上,点B在O内,tan∠APB=,AB⊥AP.如果OBOP,那么OB的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,对于PQ两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称PQ两点为同族点.下图中的PQ两点即为同族点.

(1)已知点A的坐标为(,1),

①在点R(0,4),S(2,2),T(2, )中,为点A的同族点的是

②若点Bx轴上,且AB两点为同族点,则点B的坐标为

(2)直线l ,与x轴交于点C,与y轴交于点D

M为线段CD上一点,若在直线上存在点N,使得MN两点为同族点,求n的取值范围;

M为直线l上的一个动点,若以(m,0)为圆心, 为半径的圆上存在点N,使得MN两点为同族点,直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),点P为直线BC上一动点(不与点B,C重合),连接AP,将线段PA绕点P顺时针旋转α度得到线段PQ,连接CQ.

(1)当α=90°,且点P在线段BC上时,过P作PF∥AC交直线AB于点F,如图1,图中与△APF全等的是哪个三角形,∠ACQ的度数

(2)当点P在BC延长线上,AB:AC=m:n时,如图2,试求线段BP与CQ的比值;

(3)当点P在直线BC上,α=60°,∠APB=30°,CP=4时,请直接写出线段CQ的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C1:y=mx2﹣2mx+m+4与y轴交于点A(0,3),与x轴交于点B、C(点B在点C左侧).

(1)求该抛物线的解析式;

(2)求点B的坐标;

(3)若抛物线C2:y=a(x﹣1)2﹣1(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC内接于O,AB是O的直径.PC是O的切线,C为切点,PDAB于点D,交AC于点E.

(1)求证:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.

(1)建立适当的平面直角坐标系,求抛物线的表达式;

(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.

查看答案和解析>>

科目: 来源: 题型:

【题目】奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

查看答案和解析>>

科目: 来源: 题型:

【题目】在我国古代数学著作《九章算术》中记载了这样一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现代语言表述为:如图,AB为⊙O的直径,弦CDAB于点EAE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.

查看答案和解析>>

同步练习册答案