相关习题
 0  360101  360109  360115  360119  360125  360127  360131  360137  360139  360145  360151  360155  360157  360161  360167  360169  360175  360179  360181  360185  360187  360191  360193  360195  360196  360197  360199  360200  360201  360203  360205  360209  360211  360215  360217  360221  360227  360229  360235  360239  360241  360245  360251  360257  360259  360265  360269  360271  360277  360281  360287  360295  366461 

科目: 来源: 题型:

【题目】如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,求AB的长度。(可利用的围墙长度不超过3m

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接ADBD.则下列结论:

①AC=AD②BD⊥AC四边形ACED是菱形.

其中正确的个数是( )

A0 B1 C2 D3

查看答案和解析>>

科目: 来源: 题型:

【题目】汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PCl,垂足为点C.测得PC=30米,∠APC=71°,BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

(1)港口A与小岛C之间的距离;

(2)甲轮船后来的速度.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,水坝的横截面是梯形ABCDABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tanDAB)为1:0.5,坝底AB=14m

(1)求坝高;

(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底间时拓宽加固,使得AE=2DFEFBF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:PA=PB=4,以AB为一边作正方形ABCD,使PD两点落在直线AB的两侧.

(1)如图,当∠APB=45°时,求ABPD的长;

(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为了了解高峰时段16路公交车从总站乘该路车出行的人数情况,随机抽查了10个班次乘该路车的人数,结果如下:

14,23,16,25,23,28,26,27,23,25.

(1)这组数据的众数为________,中位数为________;

(2)计算这10个班次乘该路车人数的平均数;

(3)如果16路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】对于同一锐角α有:sin2α+cos2α1,现锐角A满足sinA+cosA

试求:(1)sinAcosA的值;(2)sinAcosA的值.

查看答案和解析>>

同步练习册答案