相关习题
 0  360157  360165  360171  360175  360181  360183  360187  360193  360195  360201  360207  360211  360213  360217  360223  360225  360231  360235  360237  360241  360243  360247  360249  360251  360252  360253  360255  360256  360257  360259  360261  360265  360267  360271  360273  360277  360283  360285  360291  360295  360297  360301  360307  360313  360315  360321  360325  360327  360333  360337  360343  360351  366461 

科目: 来源: 题型:

【题目】已知抛物线y=ax2+ c(a≠0).

(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;

(2)a>0,c =0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B 两点,求证:直线AB恒经过定点(0,);

(3)a>0,c <0,抛物线与x轴交于A,B两点(AB左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PBy轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,A=90°,AB=AC=4,DBC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.

(1)当点EBC边上时,画出图形并求出BAD的度数;

(2)△CDE为等腰三角形时,求BAD的度数;

(3)在点D的运动过程中,求CE的最小值.

(参考数值:sin75°=cos75°=tan75°=)

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.

1)求每件甲种、乙种玩具的进价分别是多少元?

2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,OPAD的外接圆.

(1)求证:AB是⊙O的切线;

(2)若AC=8,tanBAC=,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】周末的一天,小明和他爷爷从家出发沿笔直的滨江大道散步,要走到距家1440米的公园再返回,途中要经过音乐喷泉广场.爷爷先出发4分钟,小明再出发追赶,两人各自的速度均保持不变,在到达公园之前,小明追上了爷爷,然后小明陪同爷爷以爷爷的速度走到公园再返回家里.如图反映了在到达公园之前,两人与音乐广场的距离之和(米)与爷爷行走的时间(分钟)之间的函数关系,则整个散步过程一共用了_________分钟.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形纸片ABCD中,AB=2,A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cosEFG的值为________

查看答案和解析>>

科目: 来源: 题型:

【题目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.

根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.

佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接写出m的值,并画出函数图象;

(2)根据表格和图象可知,方程的解有   个,分别为   

(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】在正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将ADE沿AE对折到AFE,延长EF交边BC于点G,连接AGCF,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S=,其中正确的有( )个.

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:

(1)这项被调查的总人数是多少人?

(2)试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;

(3)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为(

A. B. 1 C. 2 D. 4

查看答案和解析>>

同步练习册答案