相关习题
 0  360209  360217  360223  360227  360233  360235  360239  360245  360247  360253  360259  360263  360265  360269  360275  360277  360283  360287  360289  360293  360295  360299  360301  360303  360304  360305  360307  360308  360309  360311  360313  360317  360319  360323  360325  360329  360335  360337  360343  360347  360349  360353  360359  360365  360367  360373  360377  360379  360385  360389  360395  360403  366461 

科目: 来源: 题型:

【题目】某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系

(1)求y与x之间的函数关系式;

(2)求水流喷出的最大高度.

查看答案和解析>>

科目: 来源: 题型:

【题目】京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.

请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)

查看答案和解析>>

科目: 来源: 题型:

【题目】下面是小明设计的“作平行四边形的高”的尺规作图过程

已知:平行四边形ABCD.

求作:,垂足为点E.

作法:如图,

①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;

②作直线PQ,交AB于点O;

③以点O为圆心,OA长为半径做圆,交线段BC于点E;

④连接AE.

所以线段AE就是所求作的高.

根据小明设计的尺规作图过程

⑴使用直尺和圆规,补全图形;(保留作图痕迹)

⑵完成下面的证明

证明:AP=BP, AQ= ,

PQ为线段AB的垂直平分线.

O为AB中点.

AB为直径,⊙O与线段BC交于点E,

.( )(填推理的依据)

.

查看答案和解析>>

科目: 来源: 题型:

【题目】下表显示的是某种大豆在相同条件下的发芽试验结果:

每批粒数n

100

300

400

600

1000

2000

3000

发芽的粒数m

96

282

382

570

948

1904

2850

发芽的频率

0.960

0.940

0.955

0.950

0.948

0.952

0.950

下面有三个推断:

当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;

随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;

若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.

其中推断合理的是(  )

A. ①②③ B. ①② C. ①③ D. ②③

查看答案和解析>>

科目: 来源: 题型:

【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .

(1)求抛物线的解析式和A、B两点的坐标;

(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;

(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.

(1)求实 数k的取值范围;

(2)若(x1+1)(x2+1)=2,试求k的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.

(1)求证:CM2=MN.MA;

(2)若∠P=30°,PC=2,求CM的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).

(1)求一次函数与反比例函数的解析式;

(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2-4x+c(a≠0)与反比例函数y=的图象相交于B点,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2-4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为_______

查看答案和解析>>

同步练习册答案