相关习题
 0  360523  360531  360537  360541  360547  360549  360553  360559  360561  360567  360573  360577  360579  360583  360589  360591  360597  360601  360603  360607  360609  360613  360615  360617  360618  360619  360621  360622  360623  360625  360627  360631  360633  360637  360639  360643  360649  360651  360657  360661  360663  360667  360673  360679  360681  360687  360691  360693  360699  360703  360709  360717  366461 

科目: 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点BC两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).

(1)请直接写出BC两点的坐标及抛物线的解析式;

(2)过点PPEBC,交抛物线于点E,连接BE,当t为何值时,∠PBE=OCD

(3)点Qx轴上的动点,过点PPMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,ACB=90°,抛物线=ax2+bx+经过A、B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M从作MHBC于点H,作轴MDy轴交BC于点D,求DMH周长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点O (0,0),A (-5,0),B (2,1),抛物线(h为常数)与y轴的交点为C

(1) 抛物线经过点B,求它的解析式,并写出此时抛物线的对称轴及顶点坐标;

(2)设点C的纵坐标为,求的最大值,此时抛物线上有两点,其中,比较的大小;

(3)当线段OA被只分为两部分,且这两部分的比是1:4时,求h的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1所示,点C将线段AB分成两部分,如果,那么点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到黄金分割线,类似地给出黄金分割线的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1S2,如果,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在ABC中,若点DAB边上的黄金分割点,如图2所示,则直线CDABC的黄金分割线,你认为对吗?说说你的理由;

(2)请你说明:三角形的中线是否是该三角形的黄金分割线.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角梯形OABC中,OABCAB两点的坐标分别为A130),B1112).动点PQ分别从OB两点出发,点P以每秒2个单位的速度沿x轴向终点A运动,点Q以每秒1个单位的速度沿BC方向运动;当点P停止运动时,点Q也同时停止运动.线段PQOB相交于点D,过点DDEx轴,交AB于点E,射线QEx轴于点F.设动点PQ运动时间为t(单位:秒).

(1)t为何值时,四边形PABQ是平行四边形.

(2)PQF的面积是否发生变化?若变化,请求出PQF的面积s关于时间t的函数关系式;若不变,请求出PQF的面积.

(3)随着PQ两点的运动,PQF的形状也随之发生了变化,试问何时会出现等腰PQF

查看答案和解析>>

科目: 来源: 题型:

【题目】在等边ABC中,点DAC上一点,连接BD,直线lABBDBC分别相交于点EPF,且∠BPF=60°.

(1)如图(1),写出图中所有与BPF相似的三角形,并选择其中一对给予证明;

(2)若直线l向右平移到图(2),图(3)的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不需证明),若不成立,请说明理由;

(3)探究:如图(1),当BD满足什么条件时(其它条件不变),EF=BF?请写出探究结果,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OAO恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度ym)与水平距离xm)之间的关系式是y=x2+2x+,则下列结论:

(1)柱子OA的高度为m

(2)喷出的水流距柱子1m处达到最大高度;

(3)喷出的水流距水平面的最大高度是2.5m

(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且x3<﹣1<x1<x2,则y1,y2,y3的大小关系是(  )

A. y1<y2<y3 B. y2<y3<y1 C. y3<y1<y2 D. y2<y1<y3

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CDAC,且AC=2CD,过CCEBNAD于点E,设BC长为a

(1)求△ACD的面积(用含a的代数式表示);

(2)求点D到射线BN的距离(用含有a的代数式表示);

(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案