科目: 来源: 题型:
【题目】农场有100棵果树,每一棵树平均结600个果子.现准备多种一些果树以提高产量,根据经验估计,每多种一棵果树,平均每棵树就会少结5个果子.假设果园增种x棵果树,果子总产量为y个.
(1)增种多少棵果树,可以使果园的总产量最多?最多为多少?
(2)增种多少棵果树,可以使果子的总产量在60400个以上?
查看答案和解析>>
科目: 来源: 题型:
【题目】为保证车辆行驶安全,现在公路旁设立一检测点A观测行驶的汽车是否超速.如图,检测点A到公路的距离是24米,在公路上取两点B、C,使得∠ACB=30°,∠ABC=120°.
(1)求BC的长(结果保留根号);
(2)已知该路段限速为45千米/小时,若测得某汽车从B到C用时2秒,这辆汽车是否超速?说明理由.(参考数据:≈1.7,≈1.4)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于圆O,∠BOC=120°,AD为圆O的直径.AD交BC于P点且PB=1,PC=2,则AC的长为( )
A. B. C. 3D. 2
查看答案和解析>>
科目: 来源: 题型:
【题目】对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为,到y轴的距离为,若,则称为点P的最大距离;若,则称为点P的最大距离.
例如:点P(,)到到x轴的距离为4,到y轴的距离为3,因为3 < 4,所以点P的最大距离为.
(1)①点A(2,)的最大距离为 ;
②若点B(,)的最大距离为,则的值为 ;
(2)若点C在直线上,且点C的最大距离为,求点C的坐标;
(3)若⊙O上存在点M,使点M的最大距离为,直接写出⊙O的半径r的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.
(1)求证:E是AC中点;
(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点C是以AB为直径的⊙O上一动点,过点C作⊙O直径CD,过点B作BE⊥CD于点E.已知AB=6cm,设弦AC的长为xcm,B,E两点间的距离为ycm(当点C与点A或点B重合时,y的值为0).
小冬根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小冬的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)在(2)的条件下,当函数图象与直线相交时(原点除外),∠BAC的度数是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC=2,∠BAC=45°.将△ABC绕点A逆时针旋转α度(0<α<180)得到△ADE,B,C两点的对应点分别为点D,E,BD,CE所在直线交于点F.
(1)当△ABC旋转到图1位置时,∠CAD= (用α的代数式表示),∠BFC的度数为 °;
(2)当α=45时,在图2中画出△ADE,并求此时点A到直线BE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com