科目: 来源: 题型:
【题目】如图,已知正方形ABCD的边长为3,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将DE绕点D按逆时针旋转90°,得到DF,连接AF,
(1)当∠EAD=90°时,AF=________________.
(2)在E的整个运动过程中,AF的最大值是________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠AOB=45°,点M,N在边OB上,OM=x,ON=x+4,点P是边OA上的点,且△PMN是等腰三角形.在x>2的条件下,(1)当x=______时,符合条件的点P只有一个;(2)当x=______时,符合条件的点P恰好有三个.(两个小题都只写出一个数即可)
查看答案和解析>>
科目: 来源: 题型:
【题目】对于某一函数给出如下定义:若存在实数m,自变量的值为m 时,函数值等于m,则称m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零. 例如:图中的函数有 4,-1两个反向值,其反向距离 n 等于 5. 现有函数y=,则这个函数的反向距离的所有可能值有( )
A. 1个B. 2个C. 3个及以上的有限个D. 无数个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD中,AB=5,BC=8,点E为AD上一个动点,把△ABE沿BE折叠,点A的对应点为点F,连接DF,连接CF.当点F落在矩形内部,且CF=CD时,AE的长为( ).
A. 3B. 2.5C. 2D. 1.5
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,□ABCD中,E,F是对角线AC上的两点,若添加一个条件使△ABE≌△CDF,则添加的条件不能是( )
A. ∠1=∠2B. ∠3=∠4C. BE=DFD. AF=CE
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】对于一个三角形,设其三个内角的度数分别为x°、y°和z°,若x、y、z满足x2+y2=z2,我们定义这个三角形为美好三角形.
(1)△ABC中,若∠A=40°,∠B=80°,则△ABC (填“是”或“不是”)美好三角形;
(2)如图,锐角△ABC是⊙O的内接三角形,∠C=60°,AC=2,⊙O的直径是2,求证:△ABC是美好三角形;
(3)已知△ABC是美好三角形,∠A=30°,求∠C的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com