相关习题
 0  360685  360693  360699  360703  360709  360711  360715  360721  360723  360729  360735  360739  360741  360745  360751  360753  360759  360763  360765  360769  360771  360775  360777  360779  360780  360781  360783  360784  360785  360787  360789  360793  360795  360799  360801  360805  360811  360813  360819  360823  360825  360829  360835  360841  360843  360849  360853  360855  360861  360865  360871  360879  366461 

科目: 来源: 题型:

【题目】已知RtABC,∠C=90°CDABD.

(1)ECA延长线上,点FBC延长线上,连接DEDF

①如图1,∠B=45°AC=AEBC=CF,请补全图形,并直接写出DEDF的位置关系与数量关系;

②如图2,∠B=30°,若DEDF的位置关系满足①中的结论,请补全图形,判断AECF的数量关系,并证明;

(2)E在射线CA上,点F射线BC上,连接DEDFBEEF,如DEDFEC=8EB=17EF=10,请直接写出AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】水果中的牛油果和桔子的维生素含量很高,因此深受人们喜爱,农夫果园水果商家11月份购进了第一批牛油果和桔子共300千克,已知牛油果进价每千克15元,售价每千克30元,桔子进价每千克5元,售价每千克10元.

(1)若这批牛油果和桔子全部销售完获利不低于3500元,则牛油果至少购进多少千克?

(2)第一批牛油果和桔子很快售完,于是商家决定购进第二批牛油果和桔子,牛油果和桔子的进价不变,牛油果售价比第一批上涨a%(其中a为正整数),桔子售价比第一批上涨2a%;销量与(1)中获得最低利润时的销量相比,牛油果的销量下降a%,桔子的销量保持不变,结果第二批中已经卖掉的牛油果和桔子的销售总额比(1)中第一批牛油果和桔子销售完后对应最低销售总额增加了2%,求正整数a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1所示,点P是线段AB的中点,且AB=12,现分别以APBP为边,在AB的同侧作等边△MAP和△NBP,连结MN

(1)只用不含刻度的直尺在图1中找到△MNP外接圆的圆心O,并保留作图痕迹;

(2)若将P是线段AB的中点改成P是线段AB上异于端点的任意一点,其余条件不变(如图2),请用文字写出△MNP外接圆圆心O的位置,并求出该圆半径的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°B处的仰角为30°.已知无人飞机的飞行速度为4/秒,求这架无人飞机的飞行高度.(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.

(1)用画树状图或列表等方法列出所有可能出现的结果;

(2)求点A落在第四象限的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】将抛物线y1=x22x3先向左平移1个单位,再向上平移4个单位后,与抛物线y2=ax2+bx+c重合,现有一直线y3=2x+3与抛物线y2=ax2+bx+c相交.y2≤y3时自变量x的取值范围是______.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=10AC=8BC=6,以边AB的中点O为圆心,作半圆与AC相切,点PQ分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列图形中不一定是相似图形的是( )

A. 两个等边三角形B. 两个等腰直角三角形

C. 两个正方形D. 两个长方形

查看答案和解析>>

科目: 来源: 题型:

【题目】(2016广西贺州市)如图,将线段AB绕点O顺时针旋转90°得到线段AB,那么A(﹣2,5)的对应点A的坐标是(  )

A. (2,5) B. (5,2) C. (2,﹣5) D. (5,﹣2)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

同步练习册答案