相关习题
 0  360700  360708  360714  360718  360724  360726  360730  360736  360738  360744  360750  360754  360756  360760  360766  360768  360774  360778  360780  360784  360786  360790  360792  360794  360795  360796  360798  360799  360800  360802  360804  360808  360810  360814  360816  360820  360826  360828  360834  360838  360840  360844  360850  360856  360858  360864  360868  360870  360876  360880  360886  360894  366461 

科目: 来源: 题型:

【题目】如图1,在ABCD中,DHAB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.

(1)如图2,作FGAD于点G,交DH于点M,将DGM沿DC方向平移,得到CG′M′,连接M′B.

①求四边形BHMM′的面积;

②直线EF上有一动点N,求DNM周长的最小值.

(2)如图3,延长CBEF于点Q,过点QQKAB,过CD边上的动点PPKEF,并与QK交于点K,将PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线yx+2x轴、y轴分别交于AB两点,以AB为边在第二象限内作正方形ABCD

(1)求点AB的坐标,并求边AB的长;

(2)求点C和点D的坐标;

(3)x轴上找一点M,使△MDB的周长最小,请求出M点的坐标,并直接写出△MDB的周长最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:

(l)杨老师采用的调查方式是   (填“普查”或“抽样调查”);

(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数   

(3)请估计全校共征集作品的什数.

(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:;按照此规律继续下去,则点O2018的坐标为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数yax+b过一,二,四象限,且过(60),则关于二次函数yax2+bx+1的以下说法:①图象与x轴有两个交点;②a0b0;③当x3时函数有最小值;④若存在一个实数m,当x≤m时,yx的增大而增大,则m≤3.其中正确的是( )

A. ①②B. ①②③C. ①②④D. ②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据割圆术,由圆内接正六边形算得的圆周率的近似值是( )

A. 0.5B. 1C. 3D. π

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,O是坐标原点,过点A(﹣10)的抛物线y=x2bx3x轴的另一个交点为B,与y轴交于点C,其顶点为D点.

1)求b的值以及点D的坐标;

2)求△BCD的面积;

3)连接BCBDCD,在x轴上是否存在点P,使得以ACP为顶点的三角形与△BCD相似?若存在,求出点P的坐标;若不存在,说明理由.

4)在抛物线上是否存在点Q,使得以ACQ为顶点且以AC为直角边的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为12(参考数据:sin31°≈0.52cos31°≈0.86tan31°≈0.60).

1)求小明从点A走到点D的过程中,他上升的高度;

2)大树BC的高度约为多少米?

查看答案和解析>>

科目: 来源: 题型:

【题目】在创建“全国文明城市”和“省级文明城区”过程中,栾城区污水处理厂决定先购买A、B两型污水处理设备共20台,对城区周边污水进行处理.已知每台A型设备价格为12万元,每台B型设备价格为10万元;1台A型设备和2台B型设备每周可以处理污水640吨,2台A型设备和3台B型设备每周可以处理污水1080吨.

(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?

(2)要想使污水处理厂购买设备的资金不超过230万元,但每周处理污水的量又不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,AEBDCFBDEF分别为垂足.

1)求证:四边形AECF是平行四边形;

2)如果AE=3EF=4,求AFEC所在直线的距离.

查看答案和解析>>

同步练习册答案