相关习题
 0  360864  360872  360878  360882  360888  360890  360894  360900  360902  360908  360914  360918  360920  360924  360930  360932  360938  360942  360944  360948  360950  360954  360956  360958  360959  360960  360962  360963  360964  360966  360968  360972  360974  360978  360980  360984  360990  360992  360998  361002  361004  361008  361014  361020  361022  361028  361032  361034  361040  361044  361050  361058  366461 

科目: 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,以AC为直径作O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.

(1)求证:DE是O的切线;

(2)若CF=2,DF=4,求O直径的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.

1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?

2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点分别是A34)、B12)、C53

1)将△ABC平移,使得点A的对应点A1的坐标为(﹣24),在如图的坐标系中画出平移后的△A1B1C1

2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2B2的坐标;

3)求△A2B2C1的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yax2+bx+c经过点(﹣10),对称轴为直线l,则下列结论:abc0a+b+c0a+c0a+b0,正确的是(  )

A. ①②④B. ②④C. ①③D. ①④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,∠CAB70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得CCAB,则∠CAB'等于(  )

A. 30°B. 25°C. 15°D. 10°

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,半径为4且以坐标原点为圆心的圆Ox轴,y轴于点BDAC,过圆上的动点不与A重合,且AP右侧

PC重合时,求出E点坐标;

连接PC,当时,求点P的坐标;

连接OE,直接写出线段OE的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点AB(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的完美三角形

1如图2,求出抛物线完美三角形斜边AB的长;

抛物线完美三角形的斜边长的数量关系是

2)若抛物线完美三角形的斜边长为4,求a的值;

3)若抛物线完美三角形斜边长为n,且的最大值为-1,求mn的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABC的顶点A在抛物线yx2上,顶点BCx轴的正半轴上,且点B的坐标为(1,0)

(1)求点D坐标;

(2)将抛物线yx2适当平移,使得平移后的抛物线同时经过点B与点D,求平移后抛物线解析式,并说明你是如何平移的.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°65°,点A距地面2.5米,点B距地面10.5.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目: 来源: 题型:

【题目】一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同。

(1)从箱子中任意摸出一个球是白球的概率是多少?

(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图。

查看答案和解析>>

同步练习册答案