科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.
(1)试用含m的代数式表示抛物线的顶点坐标;
(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:
随机抽取甲乙两所学校的 20 名学生的数学成绩进行
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据 :
按如下数据段整理、描述这两组数据
分析数据 :
两组数据的平均数、中位数、众数、方差如下表:
a经统计,表格中m的值是 ___________ .
得出结论:
b若甲学校有 400 名初二学生,估计这次考试成绩 80 分以上人数为____________ .
c可以推断出 _______学校学生的数学水平较高,理由为:①__________________;②_________________.(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△ABC中,∠C = 90°, P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,设PC的长度为xcm,BQ的长度为ycm .
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x ,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y > 2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?(直接写结果)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系 xOy 中,直线 l:与 x 轴交于点 A(-2,0),与 y 轴交于点 B.双曲线与直线 l 交于 P,Q 两点,其中点 P 的纵坐标大于点 Q 的纵坐标.
(1)求点 B 的坐标;
(2)当点 P 的横坐标为 2 时,求 k 的值;
(3)连接 PO,记△POB 的面积为 S,若 ,直接写出 k 的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD 于点 E,BF∥OC,连接 BC 和 CF ,CF 交 AB 于点 G.
(1)求证:∠OCF=∠BCD ;
(2)若 CD=8,tan∠OCF=,求⊙O 半径的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形 ABCD 中,∠C=90°,AD⊥DB,点 E 为 AB 的中点,DE∥BC.
(1)求证:BD 平分∠ABC;
(2)连接 EC,若∠A =,DC=3,求 EC 的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O 及⊙O 外一点 P.
求作:⊙O 的一条切线,使这条切线经过点 P.
作法:①连接 OP,作 OP 的垂直平分线 l,交 OP 于点 A;
②以 A 为圆心,AO 为半径作圆,交⊙O 于点 M;
③作直线 PM,则直线 PM 即为⊙O 的切线.
根据小芸设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明:
证明:连接 OM,
由作图可知,A 为 OP 中点,
∴OP 为⊙A 直径,
∴∠ =90°( )(填推理的依据)
即 OM⊥PM.
又∵点 M 在⊙O 上,
∴PM 是⊙O 的切线.( )(填推理的依据)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(且),作点A关于直线OM′的对称点C,画直线BC交于OM′与点D,连接AC,AD.有下列结论:
有下列结论:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不会随着的变化而变化;
③当 时,四边形OADC为正方形;
④面积的最大值为.
其中正确的是________________.(把你认为正确结论的序号都填上)
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线与轴交于点C(0,3),其对称轴与轴交于点A(2,0).
(1)求抛物线的解析式;
(2)将抛物线适当平移,使平移后的抛物线的顶点为D(0,).已知点B(2,2),若抛物线与△OAB的边界总有两个公共点,请结合函数图象,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com