科目: 来源: 题型:
【题目】如图,池塘边一棵垂直于水面BM的笔直大树AB在点C处折断,AC部分倒下,点A与水面上的点E重合,部分沉入水中后,点A与水中的点F重合,CF交水面于点D,DF=2m,∠CEB=30°,∠CDB=45°,求CB部分的高度.(精确到0.1m.参考数据:≈1.41,≈1.73)
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年春节期间,兰州市开展了以“精致兰州志愿同行”为主题的系列志愿服务活动.金老师和程老师积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:
①“送温暖”活动岗位:为困难家庭打扫卫生,为留守儿童提供学业辅导;(分别用,表示)
②“送平安”活动岗位:消防安全常识宣传,人员密集场所维护秩序.(分别用,表示)
(1)金老师从四个岗位中随机选取一个报名,恰好选择“送温暖”活动岗位的概率是多少?
(2)若金老师和程老师各随机从四个活动岗位中选一个报名,请用树状图或列表法求出他们恰好都选择同一个岗位的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】2018年9月9日兰州市秦王川国家湿地公园在万众瞩目中盛大开园,公园被分为六大板块,分别为:亲水运动公园、西北戴维营、私人农场区、湿地生态培育区、丝路古镇、湿地科普活动区(分别记为A,B,C,D,E,F),为了了解游客“最喜欢板块”的情况,随机对部分游客进行问卷调查,规定每个人从这六个板块中选择一个,并将调查结果绘制成如下两幅不完整的统计图.
根据以上信息回答下列问题:
(1)这次调查的样本容量是 ,a= ;
(2)扇形统计图中“C”对应的圆心角为 ;
(3)补全条形统计图;
(4)若2019年预计有100000人进园游玩,请估计最喜欢板块为“B”的游客人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.其中正确的个数有( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线.
(1)求抛物线的对称轴(用含的式子去表示);
(2)若点,,都在抛物线上,则、、的大小关系为_______;
(3)直线与轴交于点,与轴交于点,过点作垂直于轴的直线与抛物线有两个交点,在抛物线对称轴右侧的点记为,当为钝角三角形时,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线与轴,轴分别交于点,B,与反比例函数图象的一个交点为.
(1)求反比例函数的表达式;
(2)设直线与 轴,轴分别交于点C,D,且,直接写出的值 .
查看答案和解析>>
科目: 来源: 题型:
【题目】下面是小华设计的“作一个角等于已知角的2倍”的尺规作图过程.
已知:.
求作:,使得.
作法:如图,
①在射线上任取一点;
②作线段的垂直平分线,交于点,交于点;
③连接;
所以即为所求作的角.
根据小华设计的尺规作图过程,
(1)使用直尺和圆规补全图形(保留作图痕迹);
(2)完成下面的证明(说明:括号里填写推理的依据).
证明:∵是线段的垂直平分线,
∴______(______)
∴.
∵(______)
∴.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在喷水池的中心处竖直安装一根水管,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高点,高度为3m,水柱落地点离池中心处3m,以水平方向为轴,建立平面直角坐标系,若选取点为坐标原点时的抛物线的表达式为,则选取点为坐标原点时的抛物线表达式为______,其中自变量的取值范围是______,水管的长为______m.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com