相关习题
 0  361164  361172  361178  361182  361188  361190  361194  361200  361202  361208  361214  361218  361220  361224  361230  361232  361238  361242  361244  361248  361250  361254  361256  361258  361259  361260  361262  361263  361264  361266  361268  361272  361274  361278  361280  361284  361290  361292  361298  361302  361304  361308  361314  361320  361322  361328  361332  361334  361340  361344  361350  361358  366461 

科目: 来源: 题型:

【题目】为推进垃圾分类,推动绿色发展,某工厂购进甲、乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分20kg,甲型机器人分类800kg垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等。

1)两种机器人每小时分别分类多少垃圾?

2)现在两种机器人共同分类700kg垃圾,工作2小时后甲型机器人因机器维修退出,求甲型机器人退出后乙型机器人还需工作多长时间才能完成?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ABCD是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB9BC12BR4.则小球所走的路径的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在二次函数yax2+bx+c(a≠0)的图象中,小明同学观察得出了下面几条信息:①b24ac0;②abc0;③;④b24a(c1);⑤关于x的一元二次方程ax2+bx+c3无实数根,共中信息错误的个数为( )

A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点AB之间的距离为10cm,双翼的边缘ACBD54cm,且与闸机侧立面夹角∠PCA=∠BDQ30°.当双翼收起时,可以通过闸机的物体的最大宽度为(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线轴交于两点,与轴交于点,直线交抛物线于点,并且,.

1)求抛物线的解析式;

2)已知点为抛物线上一动点,且在第二象限,顺次连接点,求四边形面积的最大值;

3)在(2)中四边形面积最大的条件下,过点作直线平行于轴,在这条直线上是否存在一个以点为圆心,为半径且与直线相切的圆?若存在,求出圆心的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)问题发现:

如图1,在中,,连接交于点.

填空:①的值为 ;②的度数为 .

2)类比探究:如图2,在中,,连接的延长线于点.请求出的值及的度数,并说明理由;

3)拓展延伸:在(2)的条件下,将绕点在平面内旋转,所在直线交于点,若,请直接写出当点与点重合时的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC10米,又测得∠BDA45°.已知斜坡CD的坡度为i1,求旗杆AB的高度(,结果精确到个位).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与反比例函数的图象交于两点(点在点左侧),已知点的纵坐标是2.

1)求反比例函数的表达式;

2)点上方的双曲线上有一点,如果的面积为30,直线的函数表达式.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂计划生产两种产品共60件,需购买甲、乙两种材料.生产一件产品需甲种材料4千克;生产一件产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155.

1)甲、乙两种材料每千克分别是多少元?

2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产产品不少于38件,问符合生产条件的生产方案有哪几种?

3)在(2)的条件下,若生产一件产品需加工费40元,生产一件产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低(成本=材料费+加工费)?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知, 成正比例, 成反比例,并且当时, ,当时,

)求关于的函数关系式.

)当时,求的值.

【答案】;(

【解析】分析:(1)首先根据x成正比例, x成反比例,且当x=1时,y=4;当x=2时,y=5,求出 x的关系式,进而求出yx的关系式,(2)根据(1)问求出的yx之间的关系式,令y=0,即可求出x的值.

本题解析:

)设

∵当时, ,当时,

解得,

关于的函数关系式为

)把代入得,

解得:

点睛:本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=kx(k为常数,k≠0);(2)把已知条件(自变量与对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.

型】解答
束】
24

【题目】如图,菱形的对角线相交于点,过点,连接,连接于点.

(1)求证:;

(2)若菱形的边长为2, .求的长.

查看答案和解析>>

同步练习册答案