科目: 来源: 题型:
【题目】如图,在直角坐标系中,点A的坐标为(0,8),点 B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.
(1)判断四边形DEFB的形状.并证明你的结论;
(2)试求四边形DEFB的面积S与b的关系式;
(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.
(1)求一次函数的解析式和反比例函数的解析式;
(2)求△OCD的面积;
(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:
(1)九(1)班的学生人数为 ,并把条形统计图补充完整;
(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;
(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.
(1)发现:当正方形AEFG绕点A旋转,如图②所示.
①线段DG与BE之间的数量关系是 ;
②直线DG与直线BE之间的位置关系是 ;
(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.
(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知∠AOB=60°,P为它的内部一点,M为射线OA上一点,连接PM,以P为中心,将线段PM顺时针旋转120°,得到线段PN,并且点N恰好落在射线OB上.
(1)依题意补全图1;
(2)证明:点P一定落在∠AOB的平分线上;
(3)连接OP,如果OP=2,判断OM+ON的值是否变化,若发生变化,请求出值的变化范围,若不变,请求出值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数.
(1)求函数图象的顶点坐标,对称轴和与坐标轴的交点坐标,并画出函数的大致图象.
(2)若是函数图象上的两点,且,请比较的大小关系(直接写出结果).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使∠1=∠2=∠A.
(1)求证:直线PC是⊙O的切线;
(2)若CD=4,BD=2,求线段BP的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.
(1)求证:四边形BEDF为菱形;
(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com