相关习题
 0  361219  361227  361233  361237  361243  361245  361249  361255  361257  361263  361269  361273  361275  361279  361285  361287  361293  361297  361299  361303  361305  361309  361311  361313  361314  361315  361317  361318  361319  361321  361323  361327  361329  361333  361335  361339  361345  361347  361353  361357  361359  361363  361369  361375  361377  361383  361387  361389  361395  361399  361405  361413  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx+b(k0)与轴交于点A(-2.0),与反比例函数y=(m0)的图象交于点B(2,n),连接BO,若SAOB=4.

(1)求反比例函数和一次函数的表达式:

(2)若直线AB与y轴的交点为C.求△OCB的面积

(3)根据图象,直接写出当x>0时,不等式>kx+b的解集.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图12分别是某款篮球架的实物图与示意图,ABBC于点B,底座BC1.3米,底座BC与支架AC所成的角∠ACB60°,点H在支架AF上,篮板底部支架EHBCEFEH于点E,已知AH米,HF米,HE1米.

1)求篮板底部支架HE与支架AF所成的∠FHE的度数.

2)求篮板底部点E到地面的距离,(精确到0.01米)(参考数据:≈1.41≈1.73

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在由边长为1个单位长度的小正方形组成的网格图中有格点△ABC(注:顶点在网格线交点处的三角形叫做格点三角形).只用没有刻度的直尺,按如下要求画图,

(1)以点C为位似中心,在如图中作△DECABC,且相似比为1:2;

(2)若点B为原点,点C(4,0),请在如图中画出平面直角坐标系,作出△ABC的外心,并直接写出△ABC的外心的坐标

查看答案和解析>>

科目: 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八;乙得甲太半,亦满四十八。问甲、乙二人原持钱各几何?”译文:“甲,乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文,如果乙得到甲所有钱的,那么乙也共有钱48文,问甲、乙二人原来各有多少钱?”

查看答案和解析>>

科目: 来源: 题型:

【题目】RtABC中,∠ACB=90°.AC=8BC=3,点DBC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )

A.1B.C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若EF分别是APBP的中点,设CP=x,△PEF的面积为y,且yx之间的函数关系的图象如图乙所示,则线段AB长为( )

A.2B.2C.2D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,平行四边形ABCD中,∠BDC=30°,DC=4,AEBDECFBDF,且EF恰好是BD的三等分点,AECF的延长线分别交DCABNM点,那么四边形MENF的面积是( )

A.B.C.2D.2

查看答案和解析>>

科目: 来源: 题型:

【题目】小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )

A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多

C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=﹣x+3x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过BC两点.

1)求抛物线的解析式;

2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?

3)在(2)的结论下,过点Ey轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以PQAM为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100.

(1)直接写出当时,的函数关系式;

(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?

查看答案和解析>>

同步练习册答案