科目: 来源: 题型:
【题目】2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化。某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图。请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,△A1B1C1,△A2B2C2,△A3B3C3,…,△AnBnCn均为等腰直角三角形,且∠C1=∠C2=∠C3=…=∠Cn=90°,点A1,A2,A3,…,An和点B1,B2,B3,…,Bn分别在正比例函数y=x和y=﹣x的图象上,且点A1,A2,A3,…,An的横坐标分别为1,2,3…n,线段A1B1,A2B2,A3B3,…,AnBn均与y轴平行.按照图中所反映的规律,则△AnBnCn的顶点Cn的坐标是____.(其中n为正整数)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形ABCD的顶点A、C在平面直角坐标系的坐标轴上,AB=4,CB=3,点D与点A关于y轴对称,点E、F分别是线段DA、AC上的动点(点E不与A、D重合),且∠CEF=∠ACB,若△EFC为等腰三角形,则点E的坐标为______.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分6分)一只不透明的袋子中装有1个白球、1个蓝球和2个红球,这些球除颜色外都相同.
(1)从袋中随机摸出1个球,摸出红球的概率为 ;
(2)从袋中随机摸出1个球(不放回)后,再从袋中余下的3个球中随机摸出1个球,球两次摸到的球颜色不相同的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(8,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线,过点和点,与y轴交于点C,连接AC交x轴于点D,连接OA,OB
求抛物线的函数表达式;
求点D的坐标;
的大小是______;
将绕点O旋转,旋转后点C的对应点是点,点D的对应点是点,直线与直线交于点M,在旋转过程中,当点M与点重合时,请直接写出点M到AB的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,中,,,,点,分别在边,上,将沿直线折叠,点恰好落在边上的点处,且.
(1)求的长;
(2)点是射线上的一个动点,连接,,,的面积与的面积相等,
①当点在线段上时,求的长;
②当点在线段的延长线上时,________;
(3)将直线平移,平移后的直线与直线,直线分别交于点和点,以线段为一边作正方形,点与点在直线两侧,连接当时,请直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,平面直角坐标系中,矩形的顶点的坐标为,顶点,分别在轴,轴上,点的坐标为,过点的直线与矩形的边交于点,且点不与点重合.以为一边作菱形,点在矩形的边上,设直线的函数表达式为.
(1)当时,求直线的函数表达式;
(2)当点的坐标为时,求直线的函数表达式;
(3)连接,设的面积为,的长为,请直接写出与的函数表达式及自变量的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】 如图,在Rt△ABC中,∠C=90°,点O在边BC上,以点O为圆心,OB为半径的圆经过点A,过点A作直线AD,使∠CAD=2∠B.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若OB=4,∠CAD=60°,请直接写出图中弦AB与围成的阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com