相关习题
 0  361460  361468  361474  361478  361484  361486  361490  361496  361498  361504  361510  361514  361516  361520  361526  361528  361534  361538  361540  361544  361546  361550  361552  361554  361555  361556  361558  361559  361560  361562  361564  361568  361570  361574  361576  361580  361586  361588  361594  361598  361600  361604  361610  361616  361618  361624  361628  361630  361636  361640  361646  361654  366461 

科目: 来源: 题型:

【题目】重庆是长江上游地区的经济中心、金融中心和创新中心.某公司为了调动员工积极性,将公司员工分成了三个小组进行集分制考核:每月销售业绩第一名集x分,销售业绩第二名集y分,销售业绩第三名集0分(xy,且均为正整数),经过若干个月(超过4个月)考核后,第一小组集分为23分,第二小组集分为20分,第三小组集分为9分,则第一小组最多得到_____次第二名.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两人驾车分别从AB两地相向而行,乙出发半小时后甲出发,甲出发1.5小时后汽车出现故障,于是甲停下修车,半小时后甲修好后继续沿原路按原速与乙相遇,相遇后甲随即调头以原速返回A地,乙也继续向A地行驶,甲、乙两车之间的距离(y/千米)与甲驾车时间x(小时)之间的关系如图所示,当乙到达A地时,甲距离B_____千米.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,AB3BC,点PBC边上,将△CDP沿DP折叠,点C落在点EPEDE分别交AB于点OF,且OPOF,则BF的长为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】现有两组卡片,它们除标号外其他均相同,第一组卡片上分别写有数字“123”,第二组卡片上分别写有数字3,﹣112”,把卡片背面朝上洗匀,先从第一组卡片中随机抽出一张,将其标记为一个点坐标的横坐标,再从第二组卡片中随机抽出一张,将其标记为一个点坐标的纵坐标,则组成的这个点在一次函数y=﹣2x+3上的概率是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】若数a使关于x的不等式组的解集为x<﹣2,且使关于y的分式方的解为负数,则符合条件的所有整数a的个数为(  )

A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,二次函数yax2+bx+c的图象与x轴交于AB(﹣10)两点,与y轴交于点C,则下列四个结论:①ac0;②2a+b0;③﹣1x3时,y0;④4a+c0.其中所有正确结论的序号是(  )

A.①②④B.①③④C.①②③D.②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】金佛山是巴蜀四大名山之一游客上金佛山有两种方式:一种是从西坡上山,如图,先从A沿登山步道走到点B,再沿索道乘坐缆车到点C;另一种是从北坡景区沿着盘山公路开车上山到点C.已知在点A处观测点C,得仰角∠CAD37°,且AB的水平距离AE1000米,索道BC的坡度i1,长度为2600米,CDAD于点DBFCD于点FBE的高度为(参考数据:sin37°≈0.60cos37°≈0.80tan37°0.751.73)(  )

A.2436.8B.2249.6C.1036.8D.1136.8

查看答案和解析>>

科目: 来源: 题型:

【题目】下列图形都是由大小相同的黑点按一定规律组成的,第①个图形中有3个黑点第②个图形中有11个黑点,第③个图形中有27个黑点,,按此规律排列,则第⑦个图形中黑点的个数为(  )

A.123B.171C.172D.180

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形,.点从点出发,沿方向匀速运动,速度为同时,点从点出发,沿方向匀速运动,速度为.过点于点,,于点.设运动时间为.解答下列问题:

1)当为何值时,?

2)设五边形的面积为 的函数关系式;

3)连接.是否存在某一时刻, 使点的垂直平分线上,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(问题)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?(n矩形表示矩形的邻边是2n

(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.

探究一:用12×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?

如图(1),显然只有1种镶嵌方案.所以,a11

探究二:用22×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?

如图(2),显然只有2种镶嵌方案.所以,a22

探究三:用32×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?

一类:在探究一每个镶嵌图的右侧再横着镶嵌22×1矩形,有1种镶嵌方案;

二类:在探究二每个镶嵌图的右侧再竖着镶嵌12×1矩形,有2种镶嵌方案;

如图(3).所以,a31+23

探究四:用42×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?

一类:在探究二每个镶嵌图的右侧再横着镶嵌22×1矩形,有   种镶嵌方案;

二类:在探究三每个镶嵌图的右侧再竖着镶嵌12×1矩形,有   种镶嵌方案;

所以,a4   

探究五:用52×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?

(仿照上述方法,写出探究过程,不用画图)

……

(结论)用n2×1矩形,镶嵌一个n矩形,有多少种不同的镶嵌方案?

(直接写出anan1an2的关系式,不写解答过程).

(应用)用102×1矩形,镶嵌一个2×10矩形,有   种不同的镶嵌方案.

查看答案和解析>>

同步练习册答案