相关习题
 0  361627  361635  361641  361645  361651  361653  361657  361663  361665  361671  361677  361681  361683  361687  361693  361695  361701  361705  361707  361711  361713  361717  361719  361721  361722  361723  361725  361726  361727  361729  361731  361735  361737  361741  361743  361747  361753  361755  361761  361765  361767  361771  361777  361783  361785  361791  361795  361797  361803  361807  361813  361821  366461 

科目: 来源: 题型:

【题目】近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进AB两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.

(1)A种、B种设备每台各多少万元?

(2)根据单位实际情况,需购进AB两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?

查看答案和解析>>

科目: 来源: 题型:

【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加读书社的学生有15人,请解答下列问题:

1)该班的学生共有 名;

2)若该班参加吉他社街舞社的人数相同,请你计算,吉他社对应扇形的圆心角的度数;

3901班学生甲、乙、丙是爱心社的优秀社员,现要从这三名学生中随机选两名学生参加社区义工活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是(

A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形

B.当E,F,G,H是各边中点,且ACBD时,四边形EFGH为矩形

C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形

D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知⊙OABC的外接圆,AB是⊙O的直径,点DAB延长线上的一点,AEDCDC的延长线于点EAC平分∠DAE

1DE与⊙O有何位置关系?请说明理由.

2)若AB=6CD=4,求CE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.

1)若油面宽AB=16dm,求油的最大深度.

2)在(1)的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm

查看答案和解析>>

科目: 来源: 题型:

【题目】某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图.请根据相关信息,解答下列问题:

(1)本次接受调查的跳水运动员人数为 ,图的值为

(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形OABC的顶点O在坐标原点,顶点Bx轴的正半轴上,OA边在直线y=x上,AB边在直线y=-x+2上.

1)直接写出:线段OA等于多少,∠AOC等于多少度;

2)在对角线OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交菱形的边OAOC于点MN,作⊙Q与边ABBC、弧MN都相切,⊙Q分别与边ABBC相切于点DE,设⊙Q的半径为rOP的长为y,求yr之间的函数关系式,并写出自变量r的取值范围;

3)若以O为圆心、OA长为半径作扇形OAC,请问在菱形OABC中,在除去扇形OAC后的剩余部分内,是否可以截下一个圆,使得它与扇形OAC刚好围成一个圆锥,若可以,求出这个圆的半径,若不可以,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如图所示:

(1)通过计算(结果保留根号与π).

(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为

(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为

(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为

(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图:ABC的内切圆O与边BC切于点D,若∠BOC=135°BD=3CD=2,则ABC的面积为=______

查看答案和解析>>

同步练习册答案