相关习题
 0  361636  361644  361650  361654  361660  361662  361666  361672  361674  361680  361686  361690  361692  361696  361702  361704  361710  361714  361716  361720  361722  361726  361728  361730  361731  361732  361734  361735  361736  361738  361740  361744  361746  361750  361752  361756  361762  361764  361770  361774  361776  361780  361786  361792  361794  361800  361804  361806  361812  361816  361822  361830  366461 

科目: 来源: 题型:

【题目】为了开展阳光体育运动,坚持让中小学生每天锻炼一小时,体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了340名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).

根据图示,请回答以下问题:

1没时间的人数是   ,并补全频数分布直方图;

22015年全市中小学生约18万人,按此调查,可以估计2015年全市中小学生每天锻炼超过1h的约有   万人;

3)在(2)的条件下,如果计划2017年全市中小学生每天锻炼未超过1h的人数减少到8.64万人,求2015年至2017年锻炼未超过1h人数的年平均降低的百分率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点E,F分别是ABCD的边BC,AD上的中点,且∠BAC=90°,若∠B=30°,BC=10,则四边形AECF的面积为__

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点BM间的距离可能是(  )

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,以BC为直径作圆,交斜边AB于点EDAC的中点.连接DODE.则下列结论中不一定正确的是(  )

A. DOABB. ADE是等腰三角形

C. DEACD. DE是⊙O的切线

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,是一副学生用的三角板,在ABC 中,∠C90°,∠A60°,∠B30°;在A1B1C1中,∠C190°,∠B1A1 C145°,∠B145°,且A1B1CB.若将边A1C1与边CA重合,其中点A1与点C重合.将三角板A1B1C1绕点CA1)按逆时针方向旋转,旋转过的角为α,旋转过程中边A1C1与边AB的交点为M,设ACa

1)计算A1C1的长;

2)当α30°时,证明:B1C1AB

3)若a,当α45°时,计算两个三角板重叠部分图形的面积;

4)当α60°时,用含a的代数式表示两个三角板重叠部分图形的面积.

(参考数据:sin15°cos15°tan15°2sin75°cos75°tan75°2+

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD的四个顶点分别在反比例函数(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.

(1)当m=4,n=20时.

①若点P的纵坐标为2,求直线AB的函数表达式.

②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.

(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,点F在边BC上,且AFAD,过点DDEAF,垂足为点E

1)求证:DEAB

2)以A为圆心,AB长为半径作圆弧交AF于点G,若BFFC1,求扇形ABG的面积.(结果保留π

查看答案和解析>>

科目: 来源: 题型:

【题目】为了开展阳光体育运动,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).

根据图示,请回答以下问题:

1没时间的人数是   ,并补全频数分布直方图;

22016年该市中小学生约40万人,按此调查,可以估计2016年全市中小学生每天锻炼超过1h的约有   万人;

3)在(2)的条件下,如果计划2018年该市中小学生每天锻炼未超过1h的人数降到7.5万人,求2016年至2018年锻炼未超过1h人数的年平均降低的百分率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知点E,F分别是ABCD的边BC,AD上的中点,且∠BAC=90°,若∠B=30°,BC=10,则四边形AECF的面积为__

查看答案和解析>>

同步练习册答案