科目: 来源: 题型:
【题目】如图,直线与轴,轴分别交于点,经过点的抛物线与轴的另一个交点为点,点是抛物线上一点,过点作轴于点,连接,设点的横坐标为.
求抛物线的解析式;
当点在第三象限,设的面积为,求与的函数关系式,并求出的最大值及此时点的坐标;
连接,若,请直接写出此时点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】尝试探究
如图-,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.
的值为 ;直线与直线的位置关系为 ;
类比延伸
如图,若将图中的绕点顺时针旋转,连接,则在旋转的过程中,请判断的值及直线与直线的位置关系,并说明理由;
拓展运用
若,在旋转过程中,当三点在同一直线上时,请直接写出此时线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种水果进价为每千克15元,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克.设销售单价为(元),每天的销售量为(千克),每天获利为(元).
(1)求与之间的函数关系式;
(2)求与之间的函数关系式;该水果定价为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果商家规定这种水果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线.
(2)若AB=,E是半圆上一动点,连接AE,AD,DE.
填空:
①当的长度是____________时,四边形ABDE是菱形;
②当的长度是____________时,△ADE是直角三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】每年5月20日是中国学生营养日,按时吃早餐是一种健康的饮食习惯,为了解本校九年级学生饮食习惯,某兴趣小组在九年级随机抽取了一部分学生每天吃早餐的情况,并将统计结果绘制成如下不完整的统计图表:
组别 | 调查结果 | 所占百分比 |
A | 不吃早餐 | 25% |
B | 偶尔吃早餐 | 12.5% |
C | 经常吃早餐 | |
D | 每天吃早餐 | 50% |
请根据以上统计图表,解答下列问题:
本次接受调查的总人数为_____人.
请补全条形统计图.
该校九年级共有学生人,请估计该校九年级学生每天吃早餐的人数;
请根据此次调查的结果提一条建议.
查看答案和解析>>
科目: 来源: 题型:
【题目】现有四张质地均匀,大小完全相同的卡片,在其正面分别标有数字﹣1,﹣2,2,3,把卡片背面朝上洗匀,从中随机抽出一张后,不放回,再从中随机抽出一张,则两次抽出的卡片所标数字之和为正数的概率为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在菱形中,,按以下步骤作图:①分别以点和点为圆心,为圆心,大于号的长为半径面狐,两弧交于点,:②做直线,且恰好经过点,与交于点,连接,则的值为( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线与轴,轴分别交于点,经过点的抛物线与轴的另一个交点为点,点是抛物线上一点,过点作轴于点,连接,设点的横坐标为.
求抛物线的解析式;
当点在第三象限,设的面积为,求与的函数关系式,并求出的最大值及此时点的坐标;
连接,若,请直接写出此时点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)尝试探究
如图①,在中,,,点、分别是边、上的点,且.
①的值为多少;②直线与直线的位置关系;
(2)类比延伸
如图②,若将图①中的绕点顺时针旋转,连接,,则在旋转的过程中,请判断的值及直线 与直线的位置关系,并说明理由;
(3)拓展运用
若,,在旋转过程中,当,,三点在同一直线上时,请直接写出此时线段的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种水果进价为每千克15元,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克.设销售单价为(元),每天的销售量为(千克),每天获利为(元).
(1)求与之间的函数关系式;
(2)求与之间的函数关系式;该水果定价为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果商家规定这种水果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com