相关习题
 0  361701  361709  361715  361719  361725  361727  361731  361737  361739  361745  361751  361755  361757  361761  361767  361769  361775  361779  361781  361785  361787  361791  361793  361795  361796  361797  361799  361800  361801  361803  361805  361809  361811  361815  361817  361821  361827  361829  361835  361839  361841  361845  361851  361857  361859  361865  361869  361871  361877  361881  361887  361895  366461 

科目: 来源: 题型:

【题目】如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2019次跳后它所停在的点对应的数为( )

A. 1 B. 2 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】若关于x的方程 的解为整数,且不等式组 无解,则所有满足条件的非负整数a的和为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD中,点EF分别在边BCDC上,连接AEBFAEBF,点MN分别在边ABDC上,连接MN,若MNBCFN1BE2,则BM_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCD中,BC2ABEF分别是BCAD的中点,AEBF交于点O,连接EFOC

1)求证:四边形ABEF是菱形;(2)若BC8,∠ABC60°,求OC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾,下面是七年级各班一周收集的可回收垃圾的质量频数表和频数直方图(每组含前一个边界值,不含后一个边界值).

某校七年级各班一周收集的可回收垃圾的质量频数表

组别(kg

频数

4.0~4.5

2

4.5~5.0

a

5.0~5.5

3

5.5~6.0

1

1)求a的值;

2)已知收集的可回收垃圾以0.8/kg被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50.

查看答案和解析>>

科目: 来源: 题型:

【题目】将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点EBD上;

1)求证:FDAB;(2)连接AF,求证:∠DAF=∠EFA

查看答案和解析>>

科目: 来源: 题型:

【题目】知识背景

a0x0时,因为(20,所以x﹣2+0,从而x+(当x=时取等号).

设函数y=x+(a0,x0),由上述结论可知:当x=时,该函数有最小值为2

应用举例

已知函数为y1=x(x0)与函数y2=(x0),则当x==2时,y1+y2=x+有最小值为2=4.

解决问题

(1)已知函数为y1=x+3(x﹣3)与函数y2=(x+3)2+9(x﹣3),当x取何值时,有最小值?最小值是多少?

(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读理解:如果两个正数ab,即a0b0,有下面的不等式:,当且仅当ab时取到等号我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具.

初步探究:(1)已知x0,求函数yx+的最小值.

问题迁移:(2)学校准备以围墙一面为斜边,用栅栏围成一个面积为100m2的直角三角形,作为英语角,直角三角形的两直角边各为多少时,所用栅栏最短?

创新应用:(3)如图,在直角坐标系中,直线AB经点P34),与坐标轴正半轴相交于AB两点,当△AOB的面积最小时,求△AOB的内切圆的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线yx2bxc的顶点为M,对称轴是直线x1,与x轴的交点为A(30)B.将抛物线yx2bxc绕点B逆时针方向旋转90°,点M1A1为点MA旋转后的对应点,旋转后的抛物线与y轴相交于CD两点.

(1)写出点B的坐标及求原抛物线的解析式:

(2)求证AMA1三点在同一直线上:

(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD的面积最大.如果存在,请求出点P的坐标及四边形PM1MD的面积;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2013年广东梅州11分)用如图所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:

探究一:将以上两个三角形如图拼接(BC和ED重合),在BC边上有一动点P.

(1)当点P运动到CFB的角平分线上时,连接AP,求线段AP的长;

(2)当点P在运动的过程中出现PA=FC时,求PAB的度数.

探究二:如图,将DEF的顶点D放在ABC的BC边上的中点处,并以点D为旋转中心旋转DEF,使DEF的两直角边与ABC的两直角边分别交于M、N两点,连接MN.在旋转DEF的过程中,AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案