科目: 来源: 题型:
【题目】已知二次函数的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=.
(1)求二次函数的解析式;
(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;
(3)是否存在实数、(),当时,y的取值范围为?若存在,直接写在、的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某种乐器有10个孔,依次记作第1孔,第2孔,……,第10孔,演奏时,第n孔与其音色的动听指数D之间满足关系式,该乐器的最低动听指数为4k+106,求常数k的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:在平面内,我们把既有大小又有方向的量叫做平面向量。平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:、、、、、、、(由于和是相等向量,因此只算一个)
⑴作两个相邻的正方形(如图一)。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑵作个相邻的正方形(如图二)“一字型”排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑶作个相邻的正方形(如图三)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑷作个相邻的正方形(如图四)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A是双曲线 (k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线(k2<0)交于点C.点D(m,0)是x轴上一点,且位于直线AC右侧,E是AD的中点.
(1)当m=4时,求△ACD的面积(用含k1、k2的代数式表示);
(2)若点E恰好在双曲线(k1>0)上,求m的值;
(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O的直径,BC为⊙O的弦,过O点作OD⊥BC,交⊙O的切线CD于点D,交⊙O于点E,连接AC、AE,且AE与BC交于点F.
(1)连接BD,求证:BD是⊙O的切线;
(2)若AF:EF=2:1,求tan∠CAF的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形ABCD中,△AEF的顶点E,F分别在BC、CD边上,高AG与正方形的边长相等,连BD分别交AE、AF于点M、N,若EG=4,GF=6,BM=,则MN的长为______
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点A(8,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=5时,这两个二次函数的最大值之和等于_______
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点O在△ABC内,点P、Q、R分别在边AB、BC、CA上,且OP∥BC,OQ∥CA,OR∥AB,OP=OQ=OR=x,BC=a,CA=b,AB=c,则x=( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com