科目: 来源: 题型:
【题目】小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于,超过时,所有这种水果的批发单价均为3元.图中折线表示批发单价(元)与质量的函数关系.
(1)求图中线段所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.
(以上数据摘自《中国共享经济发展年度报告(2019)》)
根据统计图提供的信息,下列推断合理的是( )
A.2018年与2017年相比,我国网约出租车客运量增加了20%以上
B.2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%
C.2015年至2018年,我国出租车客运的总量一直未发生变化
D.2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy,对于点P(xp,yp)和图形G,设Q(xQ,yQ)是图形G上任意一点,|xp﹣xQ|的最小值叫点P和图形G的“水平距离”,|yp﹣yQ|的最小值叫点P和图形G的“竖直距离”,点P和图形G的“水平距离”与“竖直距离”的最大值叫做点P和图形G的“绝对距离”
例如:点P(﹣2,3)和半径为1的⊙O,因为⊙O上任一点Q(xQ,yQ)满足﹣1≤xQ≤1,﹣1≤yQ≤1,点P和⊙O的“水平距离”为|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,点P和⊙O的“竖直距离”为|3﹣yQ|的最小值即|3﹣1|=2,因为2>1,所以点P和⊙O的“绝对距离”为2.
已知⊙O半径为1,A(2,),B(4,1),C(4,3)
(1)①直接写出点A和⊙O的“绝对距离”
②已知D是△ABC边上一个动点,当点D与⊙O的“绝对距离”为2时,写出一个满足条件的点D的坐标;
(2)已知E是△ABC边一个动点,直接写出点E与⊙O的“绝对距离”的最小值及相应的点E的坐标
(3)已知P是⊙O上一个动点,△ABC沿直线AB平移过程中,直接写出点P与△ABC的“绝对距离”的最小值及相应的点P和点C的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知等腰△ABC,∠ACB=120°,P是线段CB上一动点(与点C,B不重合),连接AP,延长BC至点Q,使得∠PAC=∠QAC,过点Q作射线QH交线段AP于H,交AB于点M,使得∠AHQ=60°.
(1)若∠PAC=α,求∠AMQ的大小(用含α的式子表示);
(2)用等式表示线段QC和BM之间的数量关系,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,将抛物线向右平移个单位,再向上平移个单位,得到抛物线,直线与的一个交点记为,与的一个交点记为,点的横坐标是,点在第一象限内.
(1)求点的坐标及的表达式;
(2)点是线段上的一个动点,过点作轴的垂线,垂足为,在的右侧作正方形.
①当点的横坐标为时,直线恰好经过正方形的顶点,求此时的值;
②在点的运动过程中,若直线与正方形始终没有公共点,直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在中,,点是边的中点,点是边上的一个动点,过点作射线的垂线,垂足为点,连接.设,.小石根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与的几组值,如表:
(说明:补全表格时相关数据保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:点是边的中点时,的长度约为_______.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:
月份 销售额 人员 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 6 | 9 | 10 | 8 | 8 |
乙 | 5 | 7 | 8 | 9 | 9 |
丙 | 5 | 9 | 10 | 5 | 11 |
(1)根据上表中的数据,将下表补充完整:
统计值 数值 人员 | 平均数(万元) | 众数(万元) | 中位数(万元) | 方差 |
甲 | 8 | 8 | 1.76 | |
乙 | 7.6 | 8 | 2.24 | |
丙 | 8 | 5 |
(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com