相关习题
 0  361840  361848  361854  361858  361864  361866  361870  361876  361878  361884  361890  361894  361896  361900  361906  361908  361914  361918  361920  361924  361926  361930  361932  361934  361935  361936  361938  361939  361940  361942  361944  361948  361950  361954  361956  361960  361966  361968  361974  361978  361980  361984  361990  361996  361998  362004  362008  362010  362016  362020  362026  362034  366461 

科目: 来源: 题型:

【题目】受疫情影响,很多学校都纷纷响应了“停课不停学”的号召,开展线上教学活动.为了解学生上网课使用的设备类型,某校从“电脑、手机、电视、其它”四种类型的设备对学生做了一次抽样调查.调查结果显示,每个学生只选择了以上四种设备类型中的一种,现将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:

1)补全条形统计图;

2)若该校共有1500名学生,估计全校用手机上网课的学生共有___________名;

3)在上网课时,老师在ABCD四位同学中随机抽取一名学生回答问题,求两次都抽取到同一名学生回答问题的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O为△ABC的外接圆,直线MN与⊙O相切于点C,弦BDMNACBD相交于点E

1)求证:∠CAB=CBD

2)若BC=5BD =8,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】为倡导绿色出行,低碳生活的号召,今年春天,安庆市的街头出现了一道道绿色的风景线--“共享单车”. 图(1)所示的是一辆共享单车的实物图. 图(2)是这辆共享单车的部分几何示意图,其中车架档AC长为40cm,座杆CE的长为18cm. ACE在同一条直线上,且∠CAB=60°,∠ACB=75°

1)求车座点E到车架档AB的距离;

2)求车架档AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,AB=4AD=8,点EAD上一点,将△ABE沿BE折叠得到△FBE,点GCD上一点,将△DEG沿EG折叠得到△HEG,且EFH三点共线,当△CGH为直角三角形时,AE的长为________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为的等边△ABC中,点DE分别是边BCAC上两个动点,且满足AE=CD. 连接BEAD相交于点P,则线段CP的最小值为(

A.1B.2C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于平面直角坐标系xOy中的点P和⊙M(半径为r),给出如下定义:若点P关于点M的对称点为Q,且rPQ≤3r,则称点P为⊙M的称心点.

1)当⊙O的半径为2时,

①如图1,在点A01),B20),C34)中,⊙O的称心点是   

②如图2,点D在直线yx上,若点D是⊙O的称心点,求点D的横坐标m的取值范围;

2)⊙T的圆心为T0t),半径为2,直线yx+1x轴,y轴分别交于点EF.若线段EF上的所有点都是⊙T的称心点,直接写出t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】抛物线y=-2x+mx+n经过点A02),B3-4).

1)求该抛物线的函数表达式及对称轴;

2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在AB之间的部分为图象G(包含AB两点),如果直线CD与图象G有两个公共点,结合函数的图象,求点D纵坐标t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】ABC和△ADE中,AB=ACAD=AE,∠BAC=DAE=α(0°α≤90°),点FGP分别是DEBCCD的中点,连接PFPG

1)如图①,α=90°,点DAB上,则∠FPG= °

2)如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;

3)连接FG,若AB=5AD=2,固定△ABC,将△ADE绕点A旋转,当PF的长最大时,FG的长为 (用含α的式子表示).

查看答案和解析>>

科目: 来源: 题型:

【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.

a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x5050≤x6060≤x7070≤x8080≤x9090≤x≤100

b.乙部门成绩如下:

40 52 70 70 71 73 77 78 80 81

82 82 82 82 83 83 83 86 91 94

c.甲、乙两部门成绩的平均数、方差、中位数如下:

平均数

方差

中位数

79.6

36.84

78.5

77

147.2

m

d.近五年该单位参赛员工进入复赛的出线成绩如下:

2014

2015

2016

2017

2018

出线成绩(百分制)

79

81

80

81

82

根据以上信息,回答下列问题:

1)写出表中m的值;

2)可以推断出选择   部门参赛更好,理由为   

3)预估(2)中部门今年参赛进入复赛的人数为   

查看答案和解析>>

科目: 来源: 题型:

【题目】在等腰直角三角形中,.点为射线上一个动点,连接,点在直线上,且.过点于点,点在直线的同侧,且,连接.请用等式表示线段之间的数量关系.小明根据学习函数的经验.对线段的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:

1)对于点在射线上的不同位置,画图、测量,得到了线段的长度的几组值,如下表:

位置

1

位置

2

位置

3

位置

4

位置

5

位置

6

位置

7

位置

8

2.83

2.83

2.83

2.83

2.83

2.83

2.83

2.83

2.10

1.32

0.53

0.00

1.32

2.10

4.37

5.6

0.52

1.07

1.63

2.00

2.92

3.48

5.09

5.97

的长度这三个量中,确定 的长度是自变量, 的长度是这个自变量的函数, 的长度是常量.

2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象;

3)结合函数图象,解决问题:请用等式表示线段之间的数量关系.

查看答案和解析>>

同步练习册答案