科目: 来源: 题型:
【题目】李师傅驾车从甲地到乙地,途中在加油站加了一次油,加油时,车载电脑显示油箱中剩余油量4升,已知汽车行驶时,每小时耗油量一定,设油箱中剩余油量为(升),汽车行驶时间为(时),与之间的函数图像如图所示.
(1)求李师傅加油前与之间的函数关系式;
(2)求的值;
(3)李师傅在加油站的加油量.
查看答案和解析>>
科目: 来源: 题型:
【题目】第二十届冬季奥林匹克运动会将于2022年在北京市和张家口市举行,为了调查学生对冬季奥运会知识的了解情况,某校对七、八年级全体学生进行了相关知识的测试,然后从七、八年级各抽20名学生的成绩(百分制),并对数据进行了整理、描述和分析,给出了部分信息.
1.七年级20名学生成绩的频数分别如下:
成绩m分 | 频数(人数) |
1 | |
2 | |
3 | |
8 | |
6 | |
合计 | 20 |
2.七年级20名学生成绩在这一组的具体成绩是:
87,88,88,88,89,89,89,89
3.七、八年级学生样本成绩的平均数,中位数,众数如下表所示:
平均数 | 中位数 | 众数 | |
七年级 | 84 | n | 89 |
八年级 | 84.2 | 85 | 85 |
根据以上信息,解得下列问题:
(1)表中n的值是 .
(2)在学生样本成绩中,某学生的成绩是87分,在他所述的年级抽取的学生中排在前10名,根据表中数据判断该生所在年级,并说明理由;
(3)七年级共有180名学生,若将不低于80分的成绩定为优秀学生,请估计七年级成绩优秀的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).
(1)求该抛物线的表达式及顶点坐标;
(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;
(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店欲购进两种商品,已知购进种商品5件和种商品4件共需300元;若购进种商品6件和种商品8件共需440元;
(1)求两种商品每件的进价分别为多少元?
(2)若该商店,种商品每件的售价为48元,种商品每件的售价为31元,且商店将购进共50件的商品全部售出后,要获得的利润超过348元,求种商品至少购进多少件?
查看答案和解析>>
科目: 来源: 题型:
【题目】某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为腰作等腰直角三角形DAF,使∠DAF=90°,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①CF与BC的位置关系为 ;
②CF,DC,BC之间的数量关系为 (直接写出结论);
(2)数学思考
如图2,当点D在线段CB的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,将△DAF沿线段DF翻折,使点A与点E重合,连接CE,若已知4CD=BC,AC=2,请求出线段CE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求证:AC是⊙O的切线;
(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)
查看答案和解析>>
科目: 来源: 题型:
【题目】2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.
在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.
(1)这次调查的总人数是 人;
(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是 度;
(3)若学校共有学生的1700人,则选择C有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,对角线BD平分∠ABC,且BD⊥DC,E为BC中点,AB=DE.
(1)求证:四边形ABED是菱形;
(2)若∠C=60°,CD=4,求四边形ABCD的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两台机床同时加工一批直径为100毫米的零件,为了检验产品的质量,从产品中随机抽查6件进行测量,测得的数据如下:(单位:毫米)甲机床:99 98 100 100 103乙机床:99 100 102 99 100 100则加工这批零件性能较好的机床是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】(概念认识)
在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线的交点为等垂弦的分割点.如图①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足为E,则AB、CD是等垂弦,E为等垂弦AB、CD的分割点.
(数学理解)
(1)如图②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分别交⊙O于点C、D,连接CD.求证: AB、CD是⊙O的等垂弦.
(2)在⊙O中,⊙O的半径为5,E为等垂弦AB、CD的分割点,.求AB的长度.
(问题解决)
(3)AB、CD是⊙O的两条弦,CD=AB,且CD⊥AB,垂足为F.
①在图③中,利用直尺和圆规作弦CD(保留作图痕迹,不写作法).
②若⊙O的半径为r,AB=mr(m为常数),垂足F与⊙O的位置关系随m的值变化而变化,直接写出点F与⊙O的位置关系及对应的m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com