科目: 来源: 题型:
【题目】如图,D是△ABC内一点,BD⊥CD,E、F、G、H分别是边AB、BD、CD、AC的中点.若AD=10,BD=8,CD=6,则四边形EFGH的周长是( )
A.24B.20C.12D.10
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,记函数的图象为,正方形的对称中心与原点重合,顶点的坐标为(2,2),点在第四象限.
(1)当=1时.
①求的最低点的纵坐标;
②求图象上所有到轴的距离为2的横坐标之和.
③若当≤≤时,-9≤≤2,则、的对应值为 .
(2)当图象与正方形的边恰好有两个公共点时,直接写出的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△中,高=3,∠=45°,=,动点从点出发,沿方向以每秒1个单位长度的速速向终点运动,当点与点、不重合时,过点作、的平行线,与分别交于点、,将△绕的中点旋转180°得△,设点的运动时间为秒,△与△重叠部分面积为.
(1)当= 秒时,点落在边上.
(2)求与的函数关系式.
(3)当直线将△分为面积比为1:3的两部分时,直接写出的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】综合与实践:折纸中的数学
问题情境:
在矩形中,=12,点、分别是、的中点,点、分别在、上,且=,将△沿折叠,点的对应点为点,将△沿折叠,点的对应点为点Q,且点、均落在矩形的内部(如图①).
数学思考:
(1)判断与是否平行,并说明理由;
(2)当长度是多少时,存在点,使四边形是有一个内角为60°的菱形(如图②)?直接写出的长度及菱形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个高都是10cm的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm高度处连通(即管子底离容器底6,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位()与注水时间()的图象如图②所示.
(1)乙、丙两个容器的底面积之比为 .
(2)图②中的值为 ,的值为 .
(3)注水多少分钟后,乙与甲的水位相差2?
查看答案和解析>>
科目: 来源: 题型:
【题目】工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,请将下列过程补充完整:
收集数据:
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
整理、描述数据:
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70—79分为生产技能良好,60—69分为生产技能合格,60分以下为生产技能不合格)
分析数据:
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | |
乙 | 78 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数约为 .
.可以推断出 部门员工的生产技能水平高.理由为 .
(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某办公大楼正前方有一根高度是15米的旗杆,从办公大楼顶端测得旗杆顶端的俯角是45°,旗杆底端到大楼前梯坎底边的距离是10米,梯坎坡长是10米,梯坎坡度=1:,则大楼的高为______米.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,矩形的顶点(1,0),(0,2),点在第一象限,∥轴,若函数=的图象经过矩形的对角线的交点,则的值为( )
A.4B.5C.8D.10
查看答案和解析>>
科目: 来源: 题型:
【题目】二次函数的顶点是直线和直线的交点.
(1)用含的代数式表示顶点的坐标.
(2)①当时,的值均随的增大而增大,求的取值范围.
②若,且满足时,二次函数的最小值为,求的取值范围.
(3)试证明:无论取任何值,二次函数的图象与直线总有两个不同的交点.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:都是的直径,都是的弦,于点,.
(1)如图1,求证:;
(2)如图2,延长交于点,求证:;
(3)如图3,在(2)的条件下,延长,交于点,若,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com