相关习题
 0  361963  361971  361977  361981  361987  361989  361993  361999  362001  362007  362013  362017  362019  362023  362029  362031  362037  362041  362043  362047  362049  362053  362055  362057  362058  362059  362061  362062  362063  362065  362067  362071  362073  362077  362079  362083  362089  362091  362097  362101  362103  362107  362113  362119  362121  362127  362131  362133  362139  362143  362149  362157  366461 

科目: 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,抛物线经过点.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

在线段上运动,若以为顶点的三角形与相似,求点的坐标;

轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为共谐点.请直接写出使得三点成为共谐点的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.

求出每天的销售利润与销售单价之间的函数关系式;

求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?

如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量

查看答案和解析>>

科目: 来源: 题型:

【题目】根据学习函数的经验,探究函数yx2+ax4|x+b|+4b0)的图象和性质:

1)下表给出了部分xy的取值;

x

L

3

2

1

0

1

2

3

4

5

L

y

L

3

0

1

0

3

0

1

0

3

L

由上表可知,a   b   

2)用你喜欢的方式在坐标系中画出函数yx2+ax4|x+b|+4的图象;

3)结合你所画的函数图象,写出该函数的一条性质;

4)若方程x2+ax4|x+b|+4x+m至少有3个不同的实数解,请直接写出m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读以下材料,并按要求完成相应地任务:

莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,Rr分别为外接圆和内切圆的半径,OI分别为其外心和内心,则.

如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

下面是该定理的证明过程(部分):

延长AI⊙O于点D,过点I⊙O的直径MN,连接DMAN.

∵∠D=∠N∠DMI=∠NAI(同弧所对的圆周角相等)

∴△MDI∽△ANI

①,

如图2,在图1(隐去MDAN)的基础上作⊙O的直径DE,连接BEBDBIIF

∵DE⊙O的直径,∴∠DBE=90°

∵⊙IAB相切于点F∴∠AFI=90°

∴∠DBE=∠IFA

∵∠BAD=∠E(同弧所对圆周角相等)

∴△AIF∽△EDB

②,

任务:(1)观察发现: (用含Rd的代数式表示)

(2)请判断BDID的数量关系,并说明理由;

(3)请观察式子①和式子②,并利用任务(1)(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;

(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.

请根据以上信息,解答下列问题:

(1)这次被调查的学生共有多少人?

(2)请将条形统计图补充完整;

(3)若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?

(4)该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2DBC边上异于点BC的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】小雪和小松分别从家和图书馆出发,沿同一条笔直的马路相向而行.小雪开始跑步,中途在某地改为步行,且步行的速度为跑步速度的一半,小雪先出发5分钟后,小松才骑自行车匀速回家.小雪到达图书馆恰好用了35分钟.两人之间的距离ym)与小雪离开出发地的时间xmin)之间的函数图象如图所示,则当小松刚到家时,小雪离图书馆的距离为____米.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=(m2)x2+2mx+m3的图象与x轴有两个交点,(x10)(x20),则下列说法正确是(  )

该函数图象一定过定点(1,﹣5)

若该函数图象开口向下,则m的取值范围为:m2

m2,且1x2时,y的最大值为:4m5

m2,且该函数图象与x轴两交点的横坐标x1x2满足﹣3x1<﹣2,﹣1x20时,m的取值范围为:m11

A.①②③④B.①②④C.①③④D.②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,AB两个顶点在x轴上方,点C的坐标是(10),以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,得到△A'B'C',设点B的对应点B'的横坐标为2,则点B的横坐标为(  )

A.1B.C.2D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某游乐场新推出了一个极速飞车的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i12BC12米,CD8米,∠D36°,(其中点ABCD均在同一平面内)则垂直升降电梯AB的高度约为(  )米.(精确到0.1米,参考数据:tan36°≈0.73cos36°≈0.81sin36°≈0.59

A.5.6B.6.9C.11.4D.13.9

查看答案和解析>>

同步练习册答案