相关习题
 0  361981  361989  361995  361999  362005  362007  362011  362017  362019  362025  362031  362035  362037  362041  362047  362049  362055  362059  362061  362065  362067  362071  362073  362075  362076  362077  362079  362080  362081  362083  362085  362089  362091  362095  362097  362101  362107  362109  362115  362119  362121  362125  362131  362137  362139  362145  362149  362151  362157  362161  362167  362175  366461 

科目: 来源: 题型:

【题目】如图所示,四边形ABCD中,ACBD于点OAO=CO=4BO=DO=3,点P为线段AC上的一个动点.过点P分别作PMAD于点M,作PNDC于点N. 连接PB,在点P运动过程中,PM+PN+PB的最小值等于_________ .

查看答案和解析>>

科目: 来源: 题型:

【题目】我国魏晋时期的数学家刘徽(263年左右)首创割圆术,所谓割圆术就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率.刘微从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,,割得越细,正多边形就越接近圆.设圆的半径为,圆内接正六边形的周长,计算;圆内接正十二边形的周长,计算;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率__________.(参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,,点上.以点为圆心,为半径画弧,交于点(点与点不重合),连接;再以点为圆心,为半径画弧,交于点(点与点不重合),连接;再以点为圆心,为半径画弧,交于点(点与点不重合),连接按照这样的方法一直画下去,得到点,若之后就不能再画出符合要求的点,则等于(

A.13B.12C.11D.10

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是某学校高中两个班的学生上学时步行、骑车、乘公交、乘私家车人数的扇形统计图,已知乘公交人数是乘私家车人数的2.若步行人数是18人,则下列结论正确的是( )

A. 被调查的学生人数为90

B. 乘私家车的学生人数为9

C. 乘公交车的学生人数为20

D. 骑车的学生人数为16

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.

(1)若BM=BN,求t的值;

(2)若△MBN与△ABC相似,求t的值;

(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克18元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量ykg)与销售单价x(元/kg)符合一次函数关系,如图是yx的函数关系图象.

1)求yx的函数解析式;

2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】11·永州)(本题满分10分)如图,已知二次函数的图象经过

A),B0,7)两点.

求该抛物线的解析式及对称轴;

为何值时,

轴上方作平行于轴的直线,与抛物线交于CD两点(点C在对称轴的左侧),

过点CD轴的垂线,垂足分别为FE.当矩形CDEF正方形时,求C点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】通过学习锐角三角比,我们知道在直角三角形中,一个锐角的大小与两条边长的比值是一一对应的,因此,两条边长的比值与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图(1)在△ABC中,ABAC,底角B的邻对记作canB,这时canB=底边/=,容易知道一个角的大小与这个角的邻对值也是一一对应的.根据上述角的邻对的定义,解下列问题:

1can30°   

2)如图(2),已知在△ABC中,ABACcanBSABC24,求△ABC的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.

(1)开通隧道前,汽车从A地到B地大约要走多少千米?

(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在锐角三角形ABC中,点DE分别在边ACAB上,AGBC于点GAFDE于点F,∠EAF=∠GAC

1)求证:△ADE∽△ABC

2)若ADBE4AE3,求CD的值.

查看答案和解析>>

同步练习册答案