相关习题
 0  362013  362021  362027  362031  362037  362039  362043  362049  362051  362057  362063  362067  362069  362073  362079  362081  362087  362091  362093  362097  362099  362103  362105  362107  362108  362109  362111  362112  362113  362115  362117  362121  362123  362127  362129  362133  362139  362141  362147  362151  362153  362157  362163  362169  362171  362177  362181  362183  362189  362193  362199  362207  366461 

科目: 来源: 题型:

【题目】如图,已知二次函数的图象交轴于两点,交轴于点,其中.

1)求点的坐标,并用含的式子表示

2)连接,当为锐角时,求的取值范围;

3)若轴上一个动点,连接,当点的坐标为时,直接写出的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】复课返校后,为了拉大学生锻炼的间距,学校决定增购适合独立训练的两种体育器材:跳绳和毽子.如果购进5根跳绳和6个毽子共需196元;购进2根跳绳和5个键子共需120元.

1)求一根跳绳和一个毽子的售价分别是多少元;

2)学校计划购买跳绳和键子两种器材共400个,由于受疫情影响,商场决定对这两种器材打折销售,其中跳绳以八折出售,毽子以七五折出售,学校要求跳绳的数量不少于毽子数量的3倍,跳绳的数量不多于310根,请你求出学校花钱最少的购买方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了如下表格与条形统计图:

分组结果

频数

频率

A.完全掌握

30

0.3

B.比较清楚

50

C.不怎么清楚

0.15

D.不清楚

5

0.05

请根据上图完成下面题目:

1)总人数为 人,

2)请你补全条形统计图;

3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,把一块含30°角的三角板的直角顶点放在反比例函数y=-x0)的图象上的点C处,另两个顶点分别落在原点Ox轴的负半轴上的点A处,且∠CAO=30°,则AC边与该函数图象的另一交点D的坐标为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】在一个不透明的袋子里装有独立包装的口罩,其中粉色口罩有3个、蓝色口罩有2个,这些口罩除了颜色外全部相同,从中随机依次不放回拿出两个口罩,则两个口罩都是粉色的概率是__________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形中,的顶点分别在边上,高与正方形的边长相等,连接分别交于点,下列说法:连接,则为直角三角形;,则的长为,其中正确结论的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,两个三角形纸板能完全重合,,将绕点从重合位置开始,按逆时针方向旋转,边分别与交于点(点不与点重合),点的内心,若,点运动的路径为,则图中阴影部分的面积为(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD、等腰RtBPQ的顶点P在对角线AC上(点PA、C不重合),QPBC交于E,QP延长线与AD交于点F,连接CQ.

(1)①求证:AP=CQ;②求证:PA2=AFAD;

(2)若AP:PC=1:3,求tanCBQ.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.

(1)求该抛物线的函数解析式;

(2)已知直线的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.

当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线于点H,连结OP,试求△OPH的面积;

当m=﹣3时,过点P分别作x轴、直线的垂线,垂足为点E,F.是否在线段BC存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,EOC上动点(不与O、C重合),作AF⊥BE,垂足为G,分别交BC、OBF、H,连接OG、CG.

(1)求证:AH=BE;

(2)∠AGO的度数是否为定值?说明理由;

(3)若∠OGC=90°,BG=,求△OGC的面积.

查看答案和解析>>

同步练习册答案