相关习题
 0  362101  362109  362115  362119  362125  362127  362131  362137  362139  362145  362151  362155  362157  362161  362167  362169  362175  362179  362181  362185  362187  362191  362193  362195  362196  362197  362199  362200  362201  362203  362205  362209  362211  362215  362217  362221  362227  362229  362235  362239  362241  362245  362251  362257  362259  362265  362269  362271  362277  362281  362287  362295  366461 

科目: 来源: 题型:

【题目】某校为了了解家长和学生参与全国中小学生新冠肺炎疫情防控专题教育的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:

(1)在这次抽样调查中,共调查了______名学生;

(2)C类所对应扇形的圆心角的度数是_______,并补全条形统计图;

(3)根据抽样调查结果,试估计该校1800名学生中家长和学生都未参与的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,在平面直角坐标系中,O为坐标原点,抛物线轴于两点(轴负半轴上),交轴于点,连接

1)求抛物线的解析式;

2为直线上方第一象限内一点,连接,延长轴于点,设点的横坐标为,点的横坐标为,求之间的函数关系式;(不要求写出自变量的取值范围)

3)把线段沿直线翻折,得到线段为第二象限内一点,连接为线段上一点,于点,射线交线段于点,连接,交于点,连接,若,设直线与抛物线第一象限交点为,求点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:内接于,直径边于点

1)如图所示,求证:

2)如图所示,过点H,交,交于点,连接,求证:

3)如图所示,在(2)的条件下,延长至点,连接,过点,射线于点,交于点,连接,若,求的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商店准备从机械厂购进甲、乙两种零件进行销售,若一个甲种零件的进价比一个乙种零件的进价多50元,用4000元购进甲种零件的数量是用1500元购进乙种零件的数量的2倍.

1)求每个甲种零件,每个乙种零件的进价分别为多少元?

2)这个商店甲种零件每件售价为260元,乙种零件每件售价为190元,商店根据市场需求,决定向该厂购进一批零件,且购进乙种零件的数量比购进甲种零件的数量的2倍还多4个,若本次购进的两种零件全部售出后,总获利大于2400元.求该商店本次购进甲种零件至少是多少个?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图所示,在中,分别是的角平分线,交于点,连接

1)求证:互相平分;

2)若,求线段的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃粽子的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用ABCD表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

请根据以上信息回答:

1)将两幅不完整的图补充完整;

2)本次参加抽样调查的居民有多少人?

3)若居民区有8000人,请估计爱吃D粽的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,中,,点分别在边上,,连接,若,则线段的长为______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数k1b为常数,k1≠0)的图象与反比例函数的图象交于点Am8)与点B42).

①求一次函数与反比例函数的解析式.

②根据图象说明,当x为何值时,

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,顶点为M的抛物线y=ax2+bx+3x轴交于A(10)B两点,与y轴交于点C,过点CCDy轴交抛物线于另一点D,作DEx轴,垂足为点E,双曲线y=(x0)经过点D,连接MDBD

1)求抛物线的表达式;

2)点NF分别是x轴,y轴上的两点,当以MDNF为顶点的四边形周长最小时,求出点NF的坐标;

3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,BPD的度数最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.

(理解):(1)如图,两个边长分别为的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;

2)如图2列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;

(运用):(3边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当时,如图,最多可以剪得个这样的三角形,所以

①当时,如图,   ;当   时,

②对于一般的情形,在边形内画个点,通过归纳猜想,可得   (用含的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.

查看答案和解析>>

同步练习册答案