科目: 来源: 题型:
【题目】某校为了了解家长和学生参与“全国中小学生新冠肺炎疫情防控”专题教育的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了______名学生;
(2)C类所对应扇形的圆心角的度数是_______,并补全条形统计图;
(3)根据抽样调查结果,试估计该校1800名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在平面直角坐标系中,O为坐标原点,抛物线交轴于、两点(在轴负半轴上),交轴于点,连接,.
(1)求抛物线的解析式;
(2)为直线上方第一象限内一点,连接、,,延长交轴于点,设点的横坐标为,点的横坐标为,求与之间的函数关系式;(不要求写出自变量的取值范围)
(3)把线段沿直线翻折,得到线段,为第二象限内一点,连接、,,为线段上一点,于点,射线交线段于点,连接交于,交于点,连接,若,,设直线与抛物线第一象限交点为,求点坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:内接于,直径交边于点,.
(1)如图所示,求证:;
(2)如图所示,过点作于H,交于,交于点,连接,求证:;
(3)如图所示,在(2)的条件下,延长至点,连接、,过点作于,射线交于点,交于点,连接,,若,,求的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商店准备从机械厂购进甲、乙两种零件进行销售,若一个甲种零件的进价比一个乙种零件的进价多50元,用4000元购进甲种零件的数量是用1500元购进乙种零件的数量的2倍.
(1)求每个甲种零件,每个乙种零件的进价分别为多少元?
(2)这个商店甲种零件每件售价为260元,乙种零件每件售价为190元,商店根据市场需求,决定向该厂购进一批零件,且购进乙种零件的数量比购进甲种零件的数量的2倍还多4个,若本次购进的两种零件全部售出后,总获利大于2400元.求该商店本次购进甲种零件至少是多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)将两幅不完整的图补充完整;
(2)本次参加抽样调查的居民有多少人?
(3)若居民区有8000人,请估计爱吃D粽的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一次函数(k1、b为常数,k1≠0)的图象与反比例函数的图象交于点A(m,8)与点B(4,2).
①求一次函数与反比例函数的解析式.
②根据图象说明,当x为何值时,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=(x>0)经过点D,连接MD,BD.
(1)求抛物线的表达式;
(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;
(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
(理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;
(运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.
①当,时,如图, ;当, 时,;
②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com